摘要(看完再决定要不要往后看)
1 介绍了多智能体系统的整体流程,用户输入 →模型推理规划 → 多智能体执行 → 交付输出。
2 多智能体系统需要一些能力才能运转良好,分别是:推理能力,规划能力,工具调用能力,长文本处理能力,记忆能力,协同能力。
3 多智能体系统在技术实现时,需要具备以下几个模块,分别做了介绍:任务规划模块,执行模块,验证模块,记忆模块,沙盒环境,工具,通信机制,智能体循环(Agent Loop)机制。
引入
随着 LLM 推理能力的不断提升,多智能体系统已经可以落地了。Manus 就是一个很好的例子,表现出的能力让用户惊叹。相较于“传统”的聊天机器人,比如 kimi 和 ChatGPT,多智能体系统在复杂任务的处理上能力更加强大。
传统的对话式 AI(如ChatGPT、Claude等)通常只能给出建议或分步指导,真正的执行仍需要用户亲力亲为。而许多现实需求(如数据调研、代码编写、内容创作)涉及多步骤、多工具的操作,用户往往需要花大量时间整合信息、使用不同工具完成任务。多智能体平台正好可以解决这一痛点:它能够独立思考、规划并执行复杂任务,将最终成果直接交付给用户。
<