huggingface cli 下载space内对应的项目

要使用 Hugging Face CLI 下载 Space 内的项目,可以按照以下步骤操作:

安装 huggingface_hub 库

确保已安装 huggingface_hub 库。如果未安装,可以通过以下命令安装:

pip install huggingface_hub

使用 huggingface-cli 下载 Space 项目

通过 huggingface-cli 下载 Space 项目,使用以下命令:


huggingface-cli download <repo_id> --repo-type=space --revision=main --local-dir=<local_directory>
  • <repo_id>:Space 项目的 ID,格式为 username/space_name。

  • –repo-type=space:指定下载类型为 Space。

  • –revision=main:指定分支或版本,默认为 main。

  • –local-dir=<local_directory>:指定本地保存目录。

示例

假设要下载用户 john-doe 的 Space 项目 my-space,并保存到本地目录 ./my-space,命令如下:

huggingface-cli download john-doe/my-space --repo-type=space --revision=main --local-dir=./my-space

验证下载

下载完成后,检查指定目录是否包含项目文件。

注意事项

确保有访问权限,私有项目需要登录 Hugging Face 账户。

使用 huggingface-cli login 登录账户:

huggingface-cli login

按照提示输入 Hugging Face 令牌即可。

通过这些步骤,你可以轻松下载 Hugging Face Space 内的项目。

如果需要配置国内镜像,可以参考镜像源那篇文章。

### Langchain-Chatchat API Server 的使用教程 #### 初始化项目 为了启动并运行 `Langchain-Chatchat`,首先需要克隆其仓库到本地环境。通过以下命令完成此操作: ```bash git clone https://github.com/chatchat-space/Langchain-Chatchat.git [^1] ``` 接着进入项目的子目录,并初始化配置文件以及创建必要的数据存储路径: ```bash cd libs/chatchat-server python chatchat/cli.py init [^2] ``` #### 下载预训练模型 在实际应用之前,还需要下载所需的大型语言模型及其嵌入向量模型。具体来说,可以从 Hugging Face 平台获取这些资源: - 嵌入向量模型:访问链接 [BGE-Large-ZH](https://huggingface.co/BAAI/bge-large-zh),下载对应的权重文件[^3]。 - 对话生成模型:前往页面 [ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b) 获取对话生成器的相关参数和结构定义。 #### 启动服务端口 一旦上述准备工作全部就绪,则可以按照如下方式开启 API 服务器来提供对外接口调用支持功能。通常情况下,默认监听地址为 localhost 上的某个指定端口号(比如8000)。以下是启动脚本的一个例子: ```bash uvicorn main:app --host 0.0.0.0 --port 8000 ``` 这里假设主程序入口位于名为 `main.py` 文件中的 FastAPI 实例变量 `app` 中。 #### 请求示例代码 下面给出了一段 Python 脚本来演示如何利用 requests 库发送 POST 请求至该 API endpoint 来实现问答交互过程: ```python import json import requests url = 'http://localhost:8000/api/v1/qwen' headers = {'Content-Type': 'application/json'} data = { "question": "你好", "history": [] } response = requests.post(url, headers=headers, data=json.dumps(data)) print(response.json()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cherry Xie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值