vgg16网络裁剪并加载模型参数

        主要是测试下模型裁剪后转onnx的问题。删除vgg16网络全连接层,加载预训练模型并重新保存模型参数,将该参数用于转onnx模型格式。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time        :2022/8/4 14:45
# @Author      :weiz
# @ProjectName :cbir
# @File        :vgg.py
# @Description :
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import cv2


class VGG16(nn.Module):

    def __init__(self):
        super(VGG16, self).__init__()

        # 1 * 3 * 224 * 224
        self.conv1_1 = nn.Conv2d(3, 64, 3)  # conv1_1:1 * 64 * 222 * 222
        self.conv1_2 = nn.Conv2d(64, 64, 3, padding=(1, 1))  # conv1_2:1 * 64 * 222* 222
        self.maxpool1 = nn.MaxPool2d((2, 2), padding=(1, 1))  # maxpool1: 1 * 64 * 112 * 112

        self.conv2_1 = nn.Conv2d(64, 128, 3)  # conv2_1:1 * 128 * 110 * 110
        self.conv2_2 = nn.Conv2d(128, 128, 3, padding=(1, 1))  # conv2_2:1 * 128 * 110 * 110
        self.maxpool2 = nn.MaxPool2d((2, 2), pa
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值