LRU Cache

目录

1.什么是LRU Cache

2.LRU Cache的实现

3.LRU 缓存


1.什么是LRU Cache

        LRU是Least Recently Used的缩写,意思是最近最少使用,它是一种Cache替换算法。 什么是Cache?狭义的Cache指的是位于CPU和主存间的快速RAM, 通常它不像系统主存那样使用
DRAM技术,而使用昂贵但较快速的SRAM技术。 广义上的Cache指的是位于速度相差较大的两种
硬件之间, 用于协调两者数据传输速度差异的结构。除了CPU与主存之间有Cache, 内存与硬盘
之间也有Cache,乃至在硬盘与网络之间也有某种意义上的Cache── 称为Internet临时文件夹或
网络内容缓存等

        Cache的容量有限,因此当Cache的容量用完后,而又有新的内容需要添加进来时, 就需要挑选并舍弃原有的部分内容,从而腾出空间来放新内容。LRU Cache 的替换原则就是将最近最少使用的内容替换掉。其实,LRU译成最久未使用会更形象, 因为该算法每次替换掉的就是一段时间内最久没有使用过的内容

2.LRU Cache的实现

        实现LRU Cache的方法和思路很多,但是要保持高效实现O(1)的put和get,那么使用双向链表和哈希表的搭配是最高效和经典的。使用双向链表是因为双向链表可以实现任意位置O(1)的插入和删除,使用哈希表是因为哈希表的增删查改也是O(1)

3.LRU 缓存

https://leetcode.cn/problems/lru-cache/description/

class LRUCache {
public:
    LRUCache(int capacity) {
        _capacity = capacity;
    }
    
    int get(int key) {
        auto hashit = _hashmap.find(key);
        if(hashit != _hashmap.end())
        {
            auto listit = hashit->second;
            pair<int, int> kv = *listit;
             
            _list.erase(listit);
            _list.push_front(kv);
            _hashmap[key] = _list.begin();
            return kv.second;
        }
        else
        {
            return -1;
        }
    }
    
    void put(int key, int value) {
        //1.如果没有数据则进行插入数据
        //2.如果有数据则进行数据更新
        auto hashit = _hashmap.find(key);
        if(hashit == _hashmap.end())
        {
            // 插入数据时,如果数据已经达到上限,则删除链表头的数据和hashmap中的数据,两个
            //删除操作都是O(1)
            if(_list.size() >= _capacity)
            {
                _hashmap.erase(_list.back().first);
                _list.pop_back();
            }
         
            _list.push_front(make_pair(key,value));
            _hashmap[key] = _list.begin(); 
        }
        else
        {
            // 再次put,将数据挪动list前面
            auto listit = hashit->second;
            pair<int, int> kv = *listit;
            kv.second = value;
         
            _list.erase(listit);
            _list.push_front(kv);
            _hashmap[key] = _list.begin();
        }
    }
    private:
        list<pair<int, int>> _list;// 将最近用过的往链表的投上移动,保持LRU
        size_t _capacity;//容量大小,超过容量则换出,保持LRU
        unordered_map<int, list<pair<int, int>>::iterator> _hashmap;
        //使用unordered_map,让搜索效率达到O(1)
};

<think>好的,用户想了解LRU缓存的工作原理和实现方法。首先,我需要回忆LRU的基本概念,确定LRU是Least Recently Used的缩写,即最近最少使用算法,常用于缓存淘汰策略。接下来,工作原理部分需要解释当缓存容量满时,如何选择最久未被访问的数据进行淘汰。这里可能需要结合数据结构,比如哈希表和双向链表,来说明如何高效地实现访问顺序的维护。 然后是具体实现方法。常见的实现方式确实是用哈希表加双向链表。哈希表用于快速定位节点,双向链表则维护访问顺序。最近访问的节点移到链表头部,最久未使用的在尾部。当插入新数据时,如果缓存已满,就删除尾部节点。这部分需要详细说明每个操作的步骤,比如访问、插入、删除等,以及它们的时间复杂度。 可能还需要提到其他实现方式,比如使用OrderedDict的数据结构,这在Python中确实存在,可以简化实现。但如果是其他语言,可能需要自己构建双向链表和哈希表。这部分可以作为不同实现方法的补充说明。 接下来,用户可能关心LRU的应用场景,比如数据库缓存、页面置换算法等,但用户的问题主要集中在实现和工作原理,所以这部分可能不需要深入,但可以作为相关问题提出。 然后,根据用户提供的引用,我需要检查是否有相关引用可以支持回答。但查看用户提供的引用内容,引用1是关于流处理和响应式编程的库,引用2是机器学习在GPU集群调度的应用,引用3是Go语言编译工具,似乎和LRU缓存没有直接关联。因此,可能无法直接引用这些内容,需要忽略引用部分,或者寻找间接关联点,但可能不太相关。 在生成相关问题的时候,需要考虑用户可能进一步想了解的内容,比如LRU的变种、时间复杂度分析、实际应用中的挑战、与其他算法比较等。例如,如何保证O(1)时间复杂度,如何处理并发访问,LRU的缺点以及改进算法如LRU-K等。 最后,代码示例部分需要确保正确性。Python中使用OrderedDict是一个典型的实现方式,每次访问时移动键到最新位置,插入时检查容量并弹出最久未使用的项。需要确保代码示例简洁,并且注释清晰,方便用户理解。 总结整个思考过程,需要将LRU的工作原理和实现方法清晰地分点解释,结合数据结构和操作步骤,给出代码示例,并生成相关问题,引导用户深入理解。同时注意用户提到的系统级指令,如数学公式的正确格式,但LRU内容可能较少涉及数学公式,所以主要关注代码块和结构。</think>### LRU缓存实现原理 LRU(Least Recently Used)缓存淘汰策略基于"最近最少使用"原则,当缓存容量满时淘汰最久未被访问的数据。其核心数据结构组合为: 1. **哈希表**:实现$O(1)$时间复杂度的键值查询 2. **双向链表**:维护键的访问顺序,最近访问的节点靠近头部 ### 操作过程 1. **访问数据**: - 通过哈希表定位节点 - 将节点移动到链表头部(表示最近使用) - 时间复杂度:$O(1)$ 2. **插入数据**: ```python if 键已存在: 更新值并移动节点到链表头部 else: 创建新节点并添加到链表头部 if 缓存已满: 删除链表尾部节点 从哈希表删除对应键 ``` ### Python实现示例 ```python from collections import OrderedDict class LRUCache: def __init__(self, capacity: int): self.cache = OrderedDict() self.capacity = capacity def get(self, key: int) -> int: if key not in self.cache: return -1 self.cache.move_to_end(key) return self.cache[key] def put(self, key: int, value: int) -> None: if key in self.cache: self.cache.move_to_end(key) self.cache[key] = value if len(self.cache) > self.capacity: self.cache.popitem(last=False) ``` ### 性能特征 - **时间复杂度**:所有操作保持$O(1)$ - **空间复杂度**:$O(n)$,n为缓存容量 - **适用场景**:符合局部性原理的访问模式,如数据库缓存、CDN缓存等[^1]
评论 79
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值