Unet项目解析(5): 数据封装、数据加载、数据显示

本文档详细解析U-Net项目的数据处理流程,包括将数据封装成HDF5格式,介绍如何写入和加载HDF5文件,讨论图像的灰阶转换,并展示如何利用已知信息进行分组显示,适用于医学图像分析领域的深度学习研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

项目GitHub主页:https://github.com/orobix/retina-unet

参考论文:Retina blood vessel segmentation with a convolution neural network (U-net) Retina blood vessel segmentation with a convolution neural network (U-net)


1.数据封装成HDF5格式

import os
import h5py
import numpy as np
from PIL import Image

def write_hdf5(arr,outfile):  # arr:数据  outfile:数据保存文件位置
  with h5py.File(outfile,"w") as f:
    f.create_dataset("image", data=arr, dtype=arr.dtype)

# 训练数据位置:图像 金标准 掩膜
original_imgs_train = "./DRIVE/training/imag
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值