spring ai 接入llm大模型 ;开源 的 AI大模型 框架介绍

Spring AI集成通义千问,为Java项目添加AI功能的步骤指南

本文旨在快速介绍如何通过Spring AI让Java项目接入通义千问国产大模型,从而为你的业务增添AI能力。

我们将引导您完成从环境准备到代码实现的全过程。

以本例子使用spring ai alibaba QWen千问api完成,你可以跑通以后换自己的实现。

QWen目前有100万免费Token额度,可以快速实现需求。同时,因为qwen也是个开源的模型,我们可以自己搭建模型来实现免费使用

Spring AI 介绍

在过去,Java 缺乏一个统一且高效的AI应用框架,这使得开发者在使用不同的AI服务时面临诸多不便。Spring AI 的出现填补了这一空白。

它是一个专为AI工程设计的应用框架,致力于将Spring生态系统的设计原则应用于AI领域。Spring AI的核心优势在于提供了一套标准化的接口,支持多种AI提供商(如OpenAI、Azure、阿里云等),允许开发者编写一次代码即可通过修改配置轻松切换不同的AI实现。

此外,Spring AI与现有的Spring生态完美兼容,并且充分利用了Java面向对象编程的优势,进一步简化了开发流程。

Spring AI的核心功能

# 能力名字:模型 Model
一句话说明:提供对多种生成式AI模型的支持,简化开发者与不同AI供应商的集成。
输入:配置信息、请求参数
输出:模型处理后的响应
举例:通过简单的配置切换OpenAI、Azure或阿里云等不同AI提供商。

# 能力名字:提示Prompt
一句话说明:向AI模型发送请求时携带的具体内容,用于引导模型生成期望的回答。
输入:文本字符串
输出:模型基于prompt生成的响应
举例:输入“写一篇关于环保的文章”,模型会根据这个提示生成相关文章。

# 能力名字:提示词模板Prompt Template
一句话说明:一种动态生成提示词的方式,支持在运行时填充变量。
输入:模板字符串及待填充的数据
输出:完整的提示词
举例:使用“{name}最喜欢的颜色是{color}”作为模板,填充后得到“张三最喜欢的颜色是蓝色”。

# 能力名字:嵌入Embedding
一句话说明:将文本转换为数值向量表示的技术,便于进行相似度计算等操作。
输入:一段或多段文本
输出:相应文本的向量形式
举例:将句子“今天天气真好”转换成一个特定维度的数字数组。

# 能力名字:结构化输出Structured Output
一句话说明:将非结构化的自然语言结果转换为预定义格式(如Java Bean)的能力。
输入:来自AI模型的非结构化文本
输出:按照指定格式解析后的数据对象
举例:将模型返回的一段描述演员及其电影列表的文字转换为包含演员姓名和电影名称列表的Java对象。

# 能力名字:检索增强生成RAG

### 适合对接 AI 大模型框架 在当前的技术趋势下,多个框架可以用于对接和集成 AI 大模型。以下是几个常见的选项及其特点: #### Spring AI Framework Spring AI 是一种专注于简化大模型开发流程的框架,特别适用于 Java 开发者。它能够帮助开发者快速构建基于大模型的应用程序[^1]。该框架支持多种主流大模型平台,例如阿里巴巴的通义千问(Qwen)、百度的文心一言以及其他第三方模型。 通过 Spring AI,开发者不仅可以轻松调用预训练好的大模型,还可以实现自定义微调等功能。具体来说,在实际项目中可以通过配置文件或者编程方式指定目标模型的服务地址、API 密钥等参数[^2]。 #### Langchain4j Langchain4j 提供了一种灵活的方式来连接不同的语言处理工具链组件,并允许用户方便地切换底层使用的大型语言模型实例[^3]。其核心设计理念围绕着模块化架构展开,使得替换不同供应商提供的LLM变得极为简便快捷。 下面展示了一个简单的例子说明如何利用Langchain4j中的`ChatLanguageModel`接口完成基本对话功能: ```java @Configuration public class LLMConfig { @Bean public ChatLanguageModel chatLanguageModel(){ return OpenAiChatModel.builder() .apiKey("your_api_key_here") .modelName("qwen-max") // 替换为你想要使用的具体型号名称 .baseUrl("https://api.example.com/v1/") .build(); } @Bean public IChatAssistant chatAssistant(){ return AiServices.builder(IChatAssistant.class) .chatLanguageModel(chatLanguageModel()) .build(); } } ``` 以上代码片段展示了如何创建并初始化一个聊天机器人服务对象 `IChatAssistant` ,这个过程依赖于先前定义好的 `ChatLanguageModel` 实现细节。 --- ### 总结 对于希望高效接入各类先进的人工智能技术的企业而言,选择合适的软件栈至关重要。无论是倾向于全栈解决方案还是更偏好轻量级插件形式的产品组合方案,上述提到的各种开源库都能满足不同程度的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值