Bert基础(十)--Bert变体之RoBERTa

RoBERTa是BERT的改进版,它取消了下句预测任务,改用动态掩码策略进行预训练,同时采用更大的批量大小和更多数据集。此外,RoBERTa使用字节级字节对编码代替WordPiece进行子词化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RoBERTa是BERT的另一个有趣且流行的变体。研究人员发现,BERT的训练远未收敛,所以他们提出了几种对BERT模型预训练的方法。RoBERTa本质上是BERT,它只是在预训练中有以下变化。

  • 在掩码语言模型构建任务中使用动态掩码而不是静态掩码。
  • 不执行下句预测任务,只用掩码语言模型构建任务进行训练。
  • 以大批量的方式进行训练。
  • 使用字节级字节对编码作为子词词元化算法。

1 使用动态掩码而不是静态掩码

我们已经知道要使用掩码语言模型构建任务和下句预测任务对BERT模型进行预训练。在掩码语言模型构建任务中,我们随机掩盖15%的标记,让网络预测被掩盖的标记。

我们以句子We arrived at the airport in time为例,在添加标记[CLS]和[SEP]后,我们得到如下标记列表。

tokens = [ [CLS], we, arrived, at<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Andy_shenzl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值