洛谷P2327 [SCOI2005]扫雷 题解

本文介绍了一道名为“扫雷”的SCOI2005竞赛题目,并提供了一个简洁有效的解决方案。该题设定在一个棋盘上,已知最右侧一列无雷,同时给出每行雷的数量提示,任务是计算左侧一列可能的布雷方案数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[SCOI2005]扫雷 - 洛谷

description:

一个

n\times 2 的棋盘。已知右侧一列全部没有雷,且已知第
i 行相应的格子为
a_i ,表示八联通的格子内共有
a_i 个雷。求左侧一列可能的雷的方案数。

solution:

观察发现,决定一个格子是否是雷的限制非常少。甚至可以进一步得出结论:雷的方案数不超过

2

我们枚举方案即可。

(1,1) 格子分别放上雷或者不放雷。那么依次向下递推可以得出每个格子唯一的是否放雷的方案。

注意:最终要判断后两个雷是否符合

a_n !!!!!

code:

#include<cstdio>
using namespace std;
int b[10005],a[10005];
int main()
{
	int n;
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
	}
	if(n==1)
	{
		printf("1\n");
		return 0;
	}
	int ans=0;
	b[1]=0;
	for(int i=2;i<=n;i++)
	{
		b[i]=a[i-1]-b[i-1]-b[i-2];
	}
	int tag=0;
	for(int i=1;i<=n;i++)
	{
		if(b[i]!=0&&b[i]!=1)
		{
			tag=1;
			break;
		}
	}
	if(tag==0&&b[n-1]+b[n]==a[n])ans++;
	b[1]=1;
	for(int i=2;i<=n;i++)
	{
		b[i]=a[i-1]-b[i-1]-b[i-2];
	}
	tag=0;
	for(int i=1;i<=n;i++)
	{
		if(b[i]!=0&&b[i]!=1)
		{
			tag=1;
			break;
		}
	}
	if(tag==0&&b[n-1]+b[n]==a[n])ans++;
	printf("%d\n",ans);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShineEternal

觉得好就给点鼓励呗

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值