洛谷P4933 大师 题解

博客围绕算法问题展开,包含问题描述及求解方案,重点提及总时间复杂度,涉及算法、大数据等信息技术领域知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大师 - 洛谷

description:

求一个长度为

n 的序列中等差数列的数量。

solution:

30\% 的数据:可以直接暴力枚举整个序列的每一个子序列,然后
O(n) 判断。

总时间复杂度

O(n\times2^n)

60\% 的数据:可以设
f[i][j] 表示以
i 为结尾公差为
j 的数列总数。然后枚举范围
[-(max_a-min_a),max_a-min_a] 内的公差。

总时间复杂度

O(n\times v)
#include<cstdio>
#include<algorithm>
using namespace std;
long long mod=998244353;
long long f[1005][50005],g[200005];//f[i][j]表示到i为止公差为j的方案数。 
long long a[1005];
long long max(long long x,long long y)
{
	if(x>y)return x;
	return y;
}
long long min(long long x,long long y)
{
	if(x<y)return x;
	return y;
}
inline long long read() {
    char ch = getchar(); long long x = 0, f = 1;
    while(ch < '0' || ch > '9') {
        if(ch == '-') f = -1;
        ch = getchar();
    } while('0' <= ch && ch <= '9') {
        x = x * 10 + ch - '0';
        ch = getchar();
    } return x * f;
}
int main()
{
	long long n;
	long long tmp=20000;
	scanf("%lld",&n);
	long long Max=0,Min=1000000000;
	for(long long i=1;i<=n;i++)
	{
		a[i]=read(); 
		//scanf("%lld",&a[i]);
		Max=max(Max,a[i]);
		Min=min(Min,a[i]);
		//f[i][0]=1;
	} 
	//f[1]=1;
	/*for(long long d=-20000;d<=20000;d++)
	{
		g[d+tmp]=1;
	}*/
	long long ans=0,qaq,qwq;
	long long orz=Max-Min;
	for(register long long d=-orz;d<=orz;d++)
	{
		for(register long long i=1;i<=n;i++)
		{
			g[a[i]+2*tmp]=0;
		}
		for(register long long i=1;i<=n;i++)
		{
			qaq=d+tmp;
			qwq=a[i]+2*tmp;
			f[i][qaq]=g[qwq-d];
			f[i][qaq]%=mod;
			g[qwq]+=f[i][qaq]+1;
			g[qwq]%=mod; 
			ans+=f[i][qaq];
			ans%=mod;
		}
	} 
	/*long long ans=0;
	for(long long d=-20000;d<=20000;d++)
	{
		ans+=f[d];
		ans=ans%mod;
	}*/
	printf("%lld\n",(ans+n)%mod);
	return 0;
}

100\% 的数据:考虑极大一部分的公差枚举都是浪费的,于是我们不如改为枚举
n ,根据两个数之间相减直接确定公差。

总时间复杂度

O(n^2)
#include<cstdio>
#include<algorithm>
using namespace std;
long long mod=998244353;
int a[1005];
long long f[1005][50005];
int main()
{
	int n;
	scanf("%d",&n);
	int maxa=0;
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		maxa=max(maxa,a[i]);
	}
	long long ans=0;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<i;j++)
		{
			int tmp=a[i]-a[j]+maxa;
			long long p=f[j][tmp]+1;
			f[i][tmp]=(f[i][tmp]+p)%mod;
			ans=(ans+p)%mod;
		}
	}
	printf("%lld\n",(ans+n)%mod);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShineEternal

觉得好就给点鼓励呗

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值