【图像超分】论文精读:SwinIR: Image Restoration Using Swin Transformer

SwinIR是一种基于Swin Transformer的图像恢复模型,用于图像超分辨率、去噪和JPEG伪影减少。该模型通过残差Swin Transformer块捕获全局信息,同时解决了传统Transformer在图像恢复中的边界问题。实验表明,SwinIR在多种任务上超越现有方法,且参数更少。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一次来请先看这篇文章:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)


前言

论文题目:SwinIR: Image Restoration Using Swin Transformer —— SwinIR:使用Swin Transformer进行图像恢复

论文地址:SwinIR: Image Restoration Using Swin Transformer

论文源码:https://github.com/JingyunLiang/SwinIR

Swin Transformer用于图像恢复!

Abstract

图像恢复是一个长期存在的低级视觉问题,旨在从低质量图像中恢复高质量图像(例如,缩小、噪声和压缩图像)。虽然最先进的图像恢复方法是基于卷积神经网络,但很少有人尝试变形金刚,这在高级视觉任务中显示出令人印象深刻的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值