【图像超分】论文精读:Navigating Beyond Dropout: An Intriguing Solution Towards Generalizable Image Super Resol

本文深入探讨了在图像超分辨率任务中,Dropout作为正则化手段的副作用,指出其降低特征交互和多样性的缺点,影响高频细节恢复。为解决这一问题,作者提出了统计对齐方法,通过调整模型的一阶和二阶特征统计,增强模型的泛化能力,改善了图像超分辨率的性能。实验表明,这种方法在多个基准数据集上优于Dropout策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值