我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串。
FBI树是一种二叉树[1],它的结点类型也包括F结点,B结点和I结点三种。由一个长度为2N的“01”串S可以构造出一棵FBI树T,递归的构造方法如下:
-
T的根结点为R,其类型与串S的类型相同;
-
若串S的长度大于1,将串S从中间分开,分为等长的左右子串S1和S2;由左子串S1构造R的左子树T1,由右子串S2构造R的右子树T2。
现在给定一个长度为2N的“01”串,请用上述构造方法构造出一棵FBI树,并输出它的后序遍历[2]序列。
[1] 二叉树:二叉树是结点的有限集合,这个集合或为空集,或由一个根结点和两棵不相交的二叉树组成。这两棵不相交的二叉树分别称为这个根结点的左子树和右子树。
[2] 后序遍历:后序遍历是深度优先遍历二叉树的一种方法,它的递归定义是:先后序遍历左子树,再后序遍历右子树,最后访问根。
输入描述:
第一行是一个整数N(0 <= N <= 10)
第二行是一个长度为2N的“01”串。
输出描述:
一个字符串,即FBI树的后序遍历序列。
示例1
输入
3
10001011
输出
IBFBBBFIBFIIIFF
备注:
对于40%的数据,N <= 2;
对于全部的数据,N<= 10。
#include<cstdio>
#include<cstring>
const int maxn = (1 << 10);
char s[maxn + 20];
int write(int l, int r)
{
if(l == r)
{
printf("%c", (s[l] == '0') ? 'B' : 'I');
return s[l] == '1';
}
int sl, sr, k = (l + r) / 2;
sl = write(l, k), sr = write(k + 1, r);
if(sl + sr == 0) {printf("B"); return 0;}
if(sl + sr == 2) {printf("I"); return 1;}
printf("F");
return 3;
}
int main()
{
scanf("%s%s", s, s);
write(0, strlen(s) - 1);
return 0;
}