Java 8最强教程

接口内允许添加默认实现的方法

Java 8 允许我们通过 default 关键字对接口中定义的抽象方法提供一个默认的实现。

请看下面示例代码:

// 定义一个公式接口
interface Formula {
// 计算
double calculate(int a);

// 求平方根
default double sqrt(int a) {
    return Math.sqrt(a);
}

}
复制代码

在上面这个接口中,我们除了定义了一个抽象方法 calculate,还定义了一个带有默认实现的方法 sqrt。 我们在实现这个接口时,可以只需要实现 calculate 方法,默认方法 sqrt 可以直接调用即可,也就是说我们可以不必强制实现 sqrt 方法。

补充:通过 default 关键字这个新特性,可以非常方便地对之前的接口做拓展,而此接口的实现类不必做任何改动。

Formula formula = new Formula() {
@Override
public double calculate(int a) {
return sqrt(a * 100);
}
};

formula.calculate(100); // 100.0
formula.sqrt(16); // 4.0
复制代码

上面通过匿名对象实现了 Formula 接口。但是即使是这样,我们为了完成一个 sqrt(a * 100) 简单计算,就写了 6 行代码,很是冗余。

Lambda 表达式

在学习 Lambda 表达式之前,我们先来看一段老版本的示例代码,其对一个含有字符串的集合进行排序:

List names = Arrays.asList(“peter”, “anna”, “mike”, “xenia”);

Collections.sort(names, new Comparator() {
@Override
public int compare(String a, String b) {
return b.compareTo(a);
}
});
复制代码

Collections 工具类提供了静态方法 sort 方法,入参是一个 List 集合,和一个 Comparator 比较器,以便对给定的 List 集合进行 排序。上面的示例代码创建了一个匿名内部类作为入参,这种类似的操作在我们日常的工作中随处可见。

Java 8 中不再推荐这种写法,而是推荐使用 Lambda 表达:

Collections.sort(names, (String a, String b) -> {
return b.compareTo(a);
});
复制代码

正如你看到的,上面这段代码变得简短很多而且易于阅读。但是我们还可以再精炼一点:

Collections.sort(names, (String a, String b) -> b.compareTo(a));
复制代码

对于只包含一行方法的代码块,我们可以省略大括号,直接 return 关键代码即可。追求极致,我们还可以让它再短点:

names.sort((a, b) -> b.compareTo(a));
复制代码

List 集合现在已经添加了 sort 方法。而且 Java 编译器能够根据类型推断机制判断出参数类型,这样,你连入参的类型都可以省略啦,怎么样,是不是感觉很强大呢!

函数式接口 Functional Interface

抛出一个疑问:在我们书写一段 Lambda 表达式后(比如上一章节中匿名内部类的 Lambda 表达式缩写形式),Java 编译器是如何进行类型推断的,它又是怎么知道重写的哪个方法的?

需要说明的是,不是每个接口都可以缩写成 Lambda 表达式。只有那些函数式接口(Functional Interface)才能缩写成 Lambda 表示式。

那么什么是函数式接口(Functional Interface)呢?

所谓函数式接口(Functional Interface)就是只包含一个抽象方法的声明。针对该接口类型的所有 Lambda 表达式都会与这个抽象方法匹配。

注意:你可能会有疑问,Java 8 中不是允许通过 defualt 关键字来为接口添加默认方法吗?那它算不算抽象方法呢?答案是:不算。因此,你可以毫无顾忌的添加默认方法,它并不违反函数式接口(Functional Interface)的定义。

总结一下:只要接口中仅仅包含一个抽象方法,我们就可以将其改写为 Lambda 表达式。为了保证一个接口明确的被定义为一个函数式接口(Functional Interface),我们需要为该接口添加注解:@FunctionalInterface。这样,一旦你添加了第二个抽象方法,编译器会立刻抛出错误提示。

示例代码:

@FunctionalInterface
interface Converter<F, T> {
T convert(F from);
}
复制代码

示例代码2:

Converter<String, Integer> converter = (from) -> Integer.valueOf(from);
Integer converted = converter.convert(“123”);
System.out.println(converted); // 123
复制代码

注意:上面的示例代码,即使去掉 @FunctionalInterface 也是好使的,它仅仅是一种约束而已。

便捷的引用类的构造器及方法

小伙伴们,还记得上一个章节这段示例代码么:

@FunctionalInterface
interface Converter<F, T> {
T convert(F from);
}
复制代码
Converter<String, Integer> converter = (from) -> Integer.valueOf(from);
Integer converted = converter.convert(“123”);
System.out.println(converted); // 123
复制代码

上面这段代码,通过 Java 8 的新特性,进一步简化上面的代码:

Converter<String, Integer> converter = Integer::valueOf;
Integer converted = converter.convert(“123”);
System.out.println(converted); // 123
复制代码

Java 8 中允许你通过 :: 关键字来引用类的方法或构造器。上面的代码简单的示例了如何引用静态方法,当然,除了静态方法,我们还可以引用普通方法:

class Something {
String startsWith(String s) {
return String.valueOf(s.charAt(0));
}
}
复制代码
Something something = new Something();
Converter<String, String> converter = something::startsWith;
String converted = converter.convert(“Java”);
System.out.println(converted); // “J”
复制代码

接下来,我们再来看看如何通过 :: 关键字来引用类的构造器。首先,我们先来定义一个示例类,在类中声明两个构造器:

class Person {
String firstName;
String lastName;

Person() {}

Person(String firstName, String lastName) {
    this.firstName = firstName;
    this.lastName = lastName;
}

}
复制代码

然后,我们再定义一个工厂接口,用来生成 Person 类:

// Person 工厂
interface PersonFactory

{
P create(String firstName, String lastName);
}
复制代码

我们可以通过 :: 关键字来引用 Person 类的构造器,来代替手动去实现这个工厂接口:

// 直接引用 Person 构造器
PersonFactory personFactory = Person::new;
Person person = personFactory.create(“Peter”, “Parker”);
复制代码

Person::new 这段代码,能够直接引用 Person 类的构造器。然后 Java 编译器能够根据上下文选中正确的构造器去实现 PersonFactory.create 方法。

Lambda 访问外部变量及接口默认方法

在本章节中,我们将会讨论如何在 lambda 表达式中访问外部变量(包括:局部变量,成员变量,静态变量,接口的默认方法.),它与匿名内部类访问外部变量很相似。

访问局部变量

在 Lambda 表达式中,我们可以访问外部的 final 类型变量,如下面的示例代码:

// 转换器
@FunctionalInterface
interface Converter<F, T> {
T convert(F from);
}
复制代码
final int num = 1;
Converter<Integer, String> stringConverter =
(from) -> String.valueOf(from + num);

stringConverter.convert(2); // 3
复制代码

与匿名内部类不同的是,我们不必显式声明 num 变量为 final 类型,下面这段代码同样有效:

int num = 1;
Converter<Integer, String> stringConverter =
(from) -> String.valueOf(from + num);

stringConverter.convert(2); // 3
复制代码

但是 num 变量必须为隐式的 final 类型,何为隐式的 final 呢?就是说到编译期为止,num 对象是不能被改变的,如下面这段代码,就不能被编译通过:

int num = 1;
Converter<Integer, String> stringConverter =
(from) -> String.valueOf(from + num);
num = 3;
复制代码

在 lambda 表达式内部改变 num 值同样编译不通过,需要注意, 比如下面的示例代码:

int num = 1;
Converter<Integer, String> converter = (from) -> {
String value = String.valueOf(from + num);
num = 3;
return value;
};
复制代码

访问成员变量和静态变量

上一章节中,了解了如何在 Lambda 表达式中访问局部变量。与局部变量相比,在 Lambda 表达式中对成员变量和静态变量拥有读写权限:

@FunctionalInterface
interface Converter<F, T> {
T convert(F from);
}
复制代码
class Lambda4 {
// 静态变量
static int outerStaticNum;
// 成员变量
int outerNum;

    void testScopes() {
        Converter<Integer, String> stringConverter1 = (from) -> {
            // 对成员变量赋值
            outerNum = 23;
            return String.valueOf(from);
        };

        Converter<Integer, String> stringConverter2 = (from) -> {
            // 对静态变量赋值
            outerStaticNum = 72;
            return String.valueOf(from);
        };
    }
}

复制代码

访问接口的默认方法

还记得第一章节中定义的那个 Formula (公式) 接口吗?

@FunctionalInterface
interface Formula {
// 计算
double calculate(int a);

// 求平方根
default double sqrt(int a) {
	return Math.sqrt(a);
}

}
复制代码

当时,我们在接口中定义了一个带有默认实现的 sqrt 求平方根方法,在匿名内部类中我们可以很方便的访问此方法:

Formula formula = new Formula() {
@Override
public double calculate(int a) {
return sqrt(a * 100);
}
};
复制代码

但是在 lambda 表达式中可不行:

Formula formula = (a) -> sqrt(a * 100);
复制代码

带有默认实现的接口方法,是不能在 lambda 表达式中访问的,上面这段代码将无法被编译通过。

内置的函数式接口

JDK 1.8 API 包含了很多内置的函数式接口。其中就包括我们在老版本中经常见到的 Comparator 和 Runnable,Java 8 为他们都添加了 @FunctionalInterface 注解,以用来支持 Lambda 表达式。

值得一提的是,除了 Comparator 和 Runnable 外,还有一些新的函数式接口,它们很多都借鉴于知名的 Google Guava 库。

对于它们,即使你已经非常熟悉了,还是最好了解一下的:

Predicate 断言

Predicate 是一个可以指定入参类型,并返回 boolean 值的函数式接口。它内部提供了一些带有默认实现的方法,可以 被用来组合一个复杂的逻辑判断(and, or, negate):

Predicate predicate = (s) -> s.length() > 0;

predicate.test(“foo”); // true
predicate.negate().test(“foo”); // false

Predicate nonNull = Objects::nonNull;
Predicate isNull = Objects::isNull;

Predicate isEmpty = String::isEmpty;
Predicate isNotEmpty = isEmpty.negate();
复制代码

Function

Function 函数式接口的作用是,我们可以为其提供一个原料,他给生产一个最终的产品。通过它提供的默认方法,组合,链行处理(compose, andThen):

Function<String, Integer> toInteger = Integer::valueOf;
Function<String, String> backToString = toInteger.andThen(String::valueOf);

backToString.apply(“123”); // “123”
复制代码

Supplier 生产者

SupplierFunction 不同,它不接受入参,直接为我们生产一个指定的结果,有点像生产者模式:

class Person {
String firstName;
String lastName;

Person() {}

Person(String firstName, String lastName) {
    this.firstName = firstName;
    this.lastName = lastName;
}

}
复制代码Supplier personSupplier = Person::new;
personSupplier.get(); // new Person
复制代码

Consumer 消费者

对于 Consumer,我们需要提供入参,用来被消费,如下面这段示例代码:

class Person {
String firstName;
String lastName;

Person() {}

Person(String firstName, String lastName) {
    this.firstName = firstName;
    this.lastName = lastName;
}

}
复制代码Consumer greeter = § -> System.out.println("Hello, " + p.firstName);
greeter.accept(new Person(“Luke”, “Skywalker”));
复制代码

Comparator

Comparator 在 Java 8 之前是使用比较普遍的。Java 8 中除了将其升级成了函数式接口,还为它拓展了一些默认方法:

Comparator comparator = (p1, p2) -> p1.firstName.compareTo(p2.firstName);

Person p1 = new Person(“John”, “Doe”);
Person p2 = new Person(“Alice”, “Wonderland”);

comparator.compare(p1, p2); // > 0
comparator.reversed().compare(p1, p2); // < 0
复制代码

Optional

首先,Optional 它不是一个函数式接口,设计它的目的是为了防止空指针异常(NullPointerException),要知道在 Java 编程中, 空指针异常可是臭名昭著的。

让我们来快速了解一下 Optional 要如何使用!你可以将 Optional 看做是包装对象(可能是 null, 也有可能非 null)的容器。当你定义了 一个方法,这个方法返回的对象可能是空,也有可能非空的时候,你就可以考虑用 Optional 来包装它,这也是在 Java 8 被推荐使用的做法。

Optional optional = Optional.of(“bam”);

optional.isPresent(); // true
optional.get(); // “bam”
optional.orElse(“fallback”); // “bam”

optional.ifPresent((s) -> System.out.println(s.charAt(0))); // “b”
复制代码

Stream 流

这一章节,我们开始步入学习 Stream 流。

什么是 Stream 流?

简单来说,我们可以使用 java.util.Stream 对一个包含一个或多个元素的集合做各种操作。这些操作可能是 中间操作 亦或是 终端操作。 终端操作会返回一个结果,而中间操作会返回一个 Stream 流。

需要注意的是,你只能对实现了 java.util.Collection 接口的类做流的操作。

Map 不支持 Stream 流。

Stream 流支持同步执行,也支持并发执行。

让我们开始步入学习的旅程吧!Go !

Filter 过滤

首先,我们创建一个 List 集合:

List stringCollection = new ArrayList<>();
stringCollection.add(“ddd2”);
stringCollection.add(“aaa2”);
stringCollection.add(“bbb1”);
stringCollection.add(“aaa1”);
stringCollection.add(“bbb3”);
stringCollection.add(“ccc”);
stringCollection.add(“bbb2”);
stringCollection.add(“ddd1”);
复制代码

Filter 的入参是一个 Predicate, 上面已经说到,Predicate 是一个断言的中间操作,它能够帮我们筛选出我们需要的集合元素。它的返参同样 是一个 Stream 流,我们可以通过 foreach 终端操作,来打印被筛选的元素:

stringCollection
.stream()
.filter((s) -> s.startsWith(“a”))
.forEach(System.out::println);

// “aaa2”, “aaa1”
复制代码

注意:foreach 是一个终端操作,它的返参是 void, 我们无法对其再次进行流操作。

Sorted 排序

Sorted 同样是一个中间操作,它的返参是一个 Stream 流。另外,我们可以传入一个 Comparator 用来自定义排序,如果不传,则使用默认的排序规则。

stringCollection
.stream()
.sorted()
.filter((s) -> s.startsWith(“a”))
.forEach(System.out::println);

// “aaa1”, “aaa2”
复制代码

需要注意,sorted 不会对 stringCollection 做出任何改变,stringCollection 还是原有的那些个元素,且顺序不变:

System.out.println(stringCollection);
// ddd2, aaa2, bbb1, aaa1, bbb3, ccc, bbb2, ddd1
复制代码

Map 转换

中间操作 Map 能够帮助我们将 List 中的每一个元素做功能处理。例如下面的示例,通过 map 我们将每一个 string 转成大写:

stringCollection
.stream()
.map(String::toUpperCase)
.sorted((a, b) -> b.compareTo(a))
.forEach(System.out::println);

// “DDD2”, “DDD1”, “CCC”, “BBB3”, “BBB2”, “AAA2”, “AAA1”
复制代码

另外,我们还可以做对象之间的转换,业务中比较常用的是将 DO(数据库对象) 转换成 BO(业务对象) 。

Match 匹配

顾名思义,match 用来做匹配操作,它的返回值是一个 boolean 类型。通过 match, 我们可以方便的验证一个 list 中是否存在某个类型的元素。

// 验证 list 中 string 是否有以 a 开头的, 匹配到第一个,即返回 true
boolean anyStartsWithA =
stringCollection
.stream()
.anyMatch((s) -> s.startsWith(“a”));

System.out.println(anyStartsWithA); // true

// 验证 list 中 string 是否都是以 a 开头的
boolean allStartsWithA =
stringCollection
.stream()
.allMatch((s) -> s.startsWith(“a”));

System.out.println(allStartsWithA); // false

// 验证 list 中 string 是否都不是以 z 开头的,
boolean noneStartsWithZ =
stringCollection
.stream()
.noneMatch((s) -> s.startsWith(“z”));

System.out.println(noneStartsWithZ); // true
复制代码

Count 计数

count 是一个终端操作,它能够统计 stream 流中的元素总数,返回值是 long 类型。

// 先对 list 中字符串开头为 b 进行过滤,让后统计数量
long startsWithB =
stringCollection
.stream()
.filter((s) -> s.startsWith(“b”))
.count();

System.out.println(startsWithB); // 3
复制代码

Reduce

Reduce 中文翻译为:减少、缩小。通过入参的 Function,我们能够将 list 归约成一个值。它的返回类型是 Optional 类型。

Optional reduced =
stringCollection
.stream()
.sorted()
.reduce((s1, s2) -> s1 + “#” + s2);

reduced.ifPresent(System.out::println);
// “aaa1#aaa2#bbb1#bbb2#bbb3#ccc#ddd1#ddd2”
复制代码

Parallel-Streams 并行流

前面章节我们说过,stream 流是支持顺序并行的。顺序流操作是单线程操作,而并行流是通过多线程来处理的,能够充分利用物理机 多核 CPU 的优势,同时处理速度更快。

首先,我们创建一个包含 1000000 UUID list 集合。

int max = 1000000;
List values = new ArrayList<>(max);
for (int i = 0; i < max; i++) {
UUID uuid = UUID.randomUUID();
values.add(uuid.toString());
}
复制代码

分别通过顺序流和并行流,对这个 list 进行排序,测算耗时:

顺序流排序

// 纳秒
long t0 = System.nanoTime();

long count = values.stream().sorted().count();
System.out.println(count);

long t1 = System.nanoTime();

// 纳秒转微秒
long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0);
System.out.println(String.format(“顺序流排序耗时: %d ms”, millis));

// 顺序流排序耗时: 899 ms

复制代码

并行流排序

// 纳秒
long t0 = System.nanoTime();

long count = values.parallelStream().sorted().count();
System.out.println(count);

long t1 = System.nanoTime();

// 纳秒转微秒
long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0);
System.out.println(String.format(“并行流排序耗时: %d ms”, millis));

// 并行流排序耗时: 472 ms
复制代码

正如你所见,同样的逻辑处理,通过并行流,我们的性能提升了近 50%。完成这一切,我们需要做的仅仅是将 stream 改成了 parallelStream

Map 集合

前面已经提到过 Map 是不支持 Stream 流的,因为 Map 接口并没有像 Collection 接口那样,定义了 stream() 方法。但是,我们可以对其 key, values, entry 使用 流操作,如 map.keySet().stream(), map.values().stream()map.entrySet().stream().

另外, JDK 8 中对 map 提供了一些其他新特性:

Map<Integer, String> map = new HashMap<>();

for (int i = 0; i < 10; i++) {
// 与老版不同的是,putIfAbent() 方法在 put 之前,
// 会判断 key 是否已经存在,存在则直接返回 value, 否则 put, 再返回 value
map.putIfAbsent(i, “val” + i);
}

// forEach 可以很方便地对 map 进行遍历操作
map.forEach((key, value) -> System.out.println(value));
复制代码

除了上面的 putIfAbsent()forEach() 外,我们还可以很方便地对某个 key 的值做相关操作:

// computeIfPresent(), 当 key 存在时,才会做相关处理
// 如下:对 key 为 3 的值,内部会先判断值是否存在,存在,则做 value + key 的拼接操作
map.computeIfPresent(3, (num, val) -> val + num);
map.get(3); // val33

// 先判断 key 为 9 的元素是否存在,存在,则做删除操作
map.computeIfPresent(9, (num, val) -> null);
map.containsKey(9); // false

// computeIfAbsent(), 当 key 不存在时,才会做相关处理
// 如下:先判断 key 为 23 的元素是否存在,不存在,则添加
map.computeIfAbsent(23, num -> “val” + num);
map.containsKey(23); // true

// 先判断 key 为 3 的元素是否存在,存在,则不做任何处理
map.computeIfAbsent(3, num -> “bam”);
map.get(3); // val33
复制代码

关于删除操作,JDK 8 中提供了能够新的 remove() API:

map.remove(3, “val3”);
map.get(3); // val33

map.remove(3, “val33”);
map.get(3); // null
复制代码

如上代码,只有当给定的 keyvalue 完全匹配时,才会执行删除操作。

关于添加方法,JDK 8 中提供了带有默认值的 getOrDefault() 方法:

// 若 key 42 不存在,则返回 not found
map.getOrDefault(42, “not found”); // not found
复制代码

对于 value 的合并操作也变得更加简单:

// merge 方法,会先判断进行合并的 key 是否存在,不存在,则会添加元素
map.merge(9, “val9”, (value, newValue) -> value.concat(newValue));
map.get(9); // val9

// 若 key 的元素存在,则对 value 执行拼接操作
map.merge(9, “concat”, (value, newValue) -> value.concat(newValue));
map.get(9); // val9concat
复制代码

新的日期 API

Java 8 中在包 java.time 下添加了新的日期 API. 它和 Joda-Time 库相似,但又不完全相同。接下来,我会通过一些示例代码介绍一下新 API 中 最关键的特性:

Clock

Clock 提供对当前日期和时间的访问。我们可以利用它来替代 System.currentTimeMillis() 方法。另外,通过 clock.instant() 能够获取一个 instant 实例, 此实例能够方便地转换成老版本中的 java.util.Date 对象。

Clock clock = Clock.systemDefaultZone();
long millis = clock.millis();

Instant instant = clock.instant();
Date legacyDate = Date.from(instant); // 老版本 java.util.Date
复制代码

Timezones 时区

ZoneId 代表时区类。通过静态工厂方法方便地获取它,入参我们可以传入某个时区编码。另外,时区类还定义了一个偏移量,用来在当前时刻或某时间 与目标时区时间之间进行转换。

System.out.println(ZoneId.getAvailableZoneIds());
// prints all available timezone ids

ZoneId zone1 = ZoneId.of(“Europe/Berlin”);
ZoneId zone2 = ZoneId.of(“Brazil/East”);
System.out.println(zone1.getRules());
System.out.println(zone2.getRules());

// ZoneRules[currentStandardOffset=+01:00]
// ZoneRules[currentStandardOffset=-03:00]
复制代码

LocalTime

LocalTime 表示一个没有指定时区的时间类,例如,10 p.m.或者 17:30:15,下面示例代码中,将会使用上面创建的 时区对象创建两个 LocalTime。然后我们会比较两个时间,并计算它们之间的小时和分钟的不同。

LocalTime now1 = LocalTime.now(zone1);
LocalTime now2 = LocalTime.now(zone2);

System.out.println(now1.isBefore(now2)); // false

long hoursBetween = ChronoUnit.HOURS.between(now1, now2);
long minutesBetween = ChronoUnit.MINUTES.between(now1, now2);

System.out.println(hoursBetween); // -3
System.out.println(minutesBetween); // -239
复制代码

LocalTime 提供多个静态工厂方法,目的是为了简化对时间对象实例的创建和操作,包括对时间字符串进行解析的操作等。

LocalTime late = LocalTime.of(23, 59, 59);
System.out.println(late); // 23:59:59

DateTimeFormatter germanFormatter =
DateTimeFormatter
.ofLocalizedTime(FormatStyle.SHORT)
.withLocale(Locale.GERMAN);

LocalTime leetTime = LocalTime.parse(“13:37”, germanFormatter);
System.out.println(leetTime); // 13:37
复制代码

LocalDate

LocalDate 是一个日期对象,例如:2014-03-11。它和 LocalTime 一样是个 final 类型对象。下面的例子演示了如何通过加减日,月,年等来计算一个新的日期。

LocalDate, LocalTime, 因为是 final 类型的对象,每一次操作都会返回一个新的时间对象。

LocalDate today = LocalDate.now();
// 今天加一天
LocalDate tomorrow = today.plus(1, ChronoUnit.DAYS);
// 明天减两天
LocalDate yesterday = tomorrow.minusDays(2);

// 2014 年七月的第四天
LocalDate independenceDay = LocalDate.of(2014, Month.JULY, 4);
DayOfWeek dayOfWeek = independenceDay.getDayOfWeek();
System.out.println(dayOfWeek); // 星期五
复制代码

也可以直接解析日期字符串,生成 LocalDate 实例。(和 LocalTime 操作一样简单)

DateTimeFormatter germanFormatter =
DateTimeFormatter
.ofLocalizedDate(FormatStyle.MEDIUM)
.withLocale(Locale.GERMAN);

LocalDate xmas = LocalDate.parse(“24.12.2014”, germanFormatter);
System.out.println(xmas); // 2014-12-24

复制代码

LocalDateTime

LocalDateTime 是一个日期-时间对象。你也可以将其看成是 LocalDateLocalTime 的结合体。操作上,也大致相同。

LocalDateTime 同样是一个 final 类型对象。

LocalDateTime sylvester = LocalDateTime.of(2014, Month.DECEMBER, 31, 23, 59, 59);

DayOfWeek dayOfWeek = sylvester.getDayOfWeek();
System.out.println(dayOfWeek); // 星期三

Month month = sylvester.getMonth();
System.out.println(month); // 十二月

// 获取改时间是该天中的第几分钟
long minuteOfDay = sylvester.getLong(ChronoField.MINUTE_OF_DAY);
System.out.println(minuteOfDay); // 1439
复制代码

如果再加上的时区信息,LocalDateTime 还能够被转换成 Instance 实例。Instance 能够被转换成老版本中 java.util.Date 对象。

Instant instant = sylvester
.atZone(ZoneId.systemDefault())
.toInstant();

Date legacyDate = Date.from(instant);
System.out.println(legacyDate); // Wed Dec 31 23:59:59 CET 2014
复制代码

格式化 LocalDateTime 对象就和格式化 LocalDate 或者 LocalTime 一样。除了使用预定义的格式以外,也可以自定义格式化输出。

DateTimeFormatter formatter =
DateTimeFormatter
.ofPattern(“MMM dd, yyyy - HH:mm”);

LocalDateTime parsed = LocalDateTime.parse(“Nov 03, 2014 - 07:13”, formatter);
String string = formatter.format(parsed);
System.out.println(string); // Nov 03, 2014 - 07:13
复制代码

注意:和 java.text.NumberFormat 不同,新的 DateTimeFormatter 类是 final 类型的,同时也是线程安全的。更多细节请查看这里

Annotations 注解

在 Java 8 中,注解是可以重复的。让我通过下面的示例代码,来看看到底是咋回事。

首先,我们定义一个包装注解,里面包含了一个有着实际注解的数组:

@interface Hints {
Hint[] value();
}

@Repeatable(Hints.class)
@interface Hint {
String value();
}
复制代码

Java 8 中,通过 @Repeatable,允许我们对同一个类使用多重注解:

第一种形态:使用注解容器(老方法)

@Hints({@Hint(“hint1”), @Hint(“hint2”)})
class Person {}
复制代码

第二种形态:使用可重复注解(新方法)

@Hint(“hint1”)
@Hint(“hint2”)
class Person {}
复制代码

使用第二种形态,Java 编译器能够在内部自动对 @Hint 进行设置。这对于需要通过反射来读取注解信息时,是非常重要的。

Hint hint = Person.class.getAnnotation(Hint.class);
System.out.println(hint); // null

Hints hints1 = Person.class.getAnnotation(Hints.class);
System.out.println(hints1.value().length); // 2

Hint[] hints2 = Person.class.getAnnotationsByType(Hint.class);
System.out.println(hints2.length); // 2
复制代码

尽管我们绝对不会在 Person 类上声明 @Hints 注解,但是它的信息仍然是可以通过 getAnnotation(Hints.class) 来读取的。 并且,getAnnotationsByType 方法会更方便,因为它赋予了所有 @Hints 注解标注的方法直接的访问权限。

@Target({ElementType.TYPE_PARAMETER, ElementType.TYPE_USE})
@interface MyAnnotation {}
复制代码

二、执行流程

2.1、 创建stream

1、集合创建流

java.util.Collection.stream()

List list = new ArrayList<>();
list.stream();

Set set = new HashSet<>();
set.stream();

Map<String,String> map = new HashMap<>();
map.keySet().stream();
map.values().stream();
map.entrySet().stream();

2、数组创建流

java.util.Arrays.stream(T[] array)

String[] arr = {};
Arrays.stream(arr);

3、Stream的静态方法

Stream.of(T t)

Stream.of(T… values)

Stream.iterate(T seed,UnaryOperator f):生成一个无限长度的Stream,参数一是初始值,参数二是函数,作用于参数一。一般与limit连用,限制元素个数。

Stream.generate(Supplier s):生成一个无限长度的Stream,一般与limit连用。常用场景:生成常量流和随机数流。

Stream.of(1);
Stream.of(1,2,3);
Stream.iterate(0,(e->e+1)).limit(5).forEach(e-> System.out.println(e));
Stream.generate(()->Math.random()).limit(5).forEach(e-> System.out.println(e));

2.2、中间操作

1、概念

每次返回一个新的流,可以有多个

2、分类

1)、无状态(元素处理不受之前元素影响)

filter()、map()、mapToInt()、mapToLong()、mapToDouble()、flatMap()、flatMapToInt()、flatMapToLong()、flatMapToDouble()、peek()、unordered()

2)、有状态(必须拿到全部元素才能继续下去)

distinct()、sorted()、limit()、skip()

3、详细介绍

1)、filter()

对流中的元素按照给定的函数过滤,生成新的符合过滤条件的流。

Integer[] arr = {1,2,3,4,5,6,7,8,9,10};
Stream.of(arr).filter(e->e>=5).forEach(e-> System.out.println(e));

//输出:
5
6
7
8
9
10

2)、map()

对流中的每个元素按照给定的函数进行转换操作,生成新的流只包含转换后的元素。

String[] arr = {“apple”,“banana”,“orange”};
Stream.of(arr).map(e ->e.length()).forEach(e->System.out.println(e));

//输出:
5
6
6

mapToInt()、mapToLong()、mapToDouble()是map()的是三个变种方法,主要作用是免除自动拆箱装箱的额外消耗。

3)、flatMap()

对流中的每个元素进行扁平化提取,组成新的流。

map()与flatMap()对比:map提取流中的引用组成新的流,而flatMap提取流中的元素组成新的流。

String[] arr = {“1-2-3-4”,“5-6-7”};
Stream.of(arr).map(e->Stream.of(e.split(“-”))).forEach(e-> System.out.println(e));
Stream.of(arr).flatMap(e->Stream.of(e.split(“-”))).forEach(e-> System.out.println(e));

List<List> lists = new ArrayList<>();
List list1 = Arrays.asList(“a”,“b”,“c”);
List list2 = Arrays.asList(“d”,“e”,“f”);
lists.add(list1);
lists.add(list2);
lists.stream().flatMap(e->e.stream()).forEach(e-> System.out.println(e));

//输出:
java.util.stream.ReferencePipeline H e a d @ 5680 a 178 j a v a . u t i l . s t r e a m . R e f e r e n c e P i p e l i n e Head@5680a178 java.util.stream.ReferencePipeline Head@5680a178java.util.stream.ReferencePipelineHead@5fdef03a
1
2
3
4
5
6
7

a
b
c
d
e
f

flatMapToInt()、flatMapToLong()、flatMapToDouble()是flatMap()的是三个变种方法,主要作用是免除自动拆箱装箱的额外消耗。

String[] arr = {“1”,“2”,“3”,“4”,“5”,“6”};
Stream.of(arr).flatMapToDouble(e-> DoubleStream.of(Double.parseDouble(e))).forEach(e-> System.out.println(“value:”+e+“,type:”+ToolUtil.getType(e)));

//输出:
value:1.0,type:class java.lang.Double
value:2.0,type:class java.lang.Double
value:3.0,type:class java.lang.Double
value:4.0,type:class java.lang.Double
value:5.0,type:class java.lang.Double
value:6.0,type:class java.lang.Double

4)、peek()

将流中的元素进行消费,不改变流中的元素。

peek()与map()的区别:map操作可以改变流中的元素,有返回值;peek操作仅仅在操作中消费元素,没有返回值,传入下一个操作的元素不会改变。

String[] arr = {“1”,“2”,“3”,“4”,“5”,“6”};
Stream.of(arr).map(e-> {
e = e + “a”;
System.out.println(“map:”+e);
return e;
}).forEach(e-> System.out.println(“map-foreach:”+e));

Stream.of(arr).peek(e-> {
e = e + “a”;
System.out.println(“peek:”+e);
}).forEach(e-> System.out.println(“peek-foreach:”+e));

//输出:
map:1a
map-foreach:1a
map:2a
map-foreach:2a
map:3a
map-foreach:3a
map:4a
map-foreach:4a
map:5a
map-foreach:5a
map:6a
map-foreach:6a
peek:1a
peek-foreach:1
peek:2a
peek-foreach:2
peek:3a
peek-foreach:3
peek:4a
peek-foreach:4
peek:5a
peek-foreach:5
peek:6a
peek-foreach:6

5)、unordered()

基于调用流,返回一个无序流。

在有序流的并行执行情况下,保持 的顺序性是需要高昂的缓冲开销。所以在处理元素时,不需要保证元素的顺序性,那么我们可以使用 unordered() 方法来实现无序流。

6)、distinct()

将流中的元素去重。如果是自定义类,一定要重写equals()方法与hashCode()方法。

7)、sorted()

默认按自然升序对集合进行排序,可使用Comparator提供 reverseOrder() 方法实现降序排列。

String[] arr = {“7”,“2”,“0”,“4”,“2”,“6”};
Stream.of(arr).sorted().forEach(e-> System.out.print(e+“->”));
System.out.println();
Stream.of(arr).sorted(Comparator.reverseOrder()).forEach(e-> System.out.print(e+“->”));
System.out.println();
Stream.of(arr).sorted(new Comparator() {
@Override
public int compare(String o1, String o2) {
return o2.compareTo(o1);
}
}).forEach(e-> System.out.print(e+“->”));

//输出:
0->2->2->4->6->7->
7->6->4->2->2->0->
7->6->4->2->2->0->

8)、limit()

截取前n个元素,返回新的stream流。

9)、skip()

跳过前面n个元素,返回新的stream流。

2.3、终止操作

1、概念

每个流只能进行一次终止操作,终止操作结束后流无法再使用。终端操作会产生新的集合或者值。

2、分类

1)、非短路操作(必须处理完所有操作才能得到结果)

forEach()、forEachOrdered()、toArray()、reduce()、collect()、max()、min()、count()

2)、短路操作(遇到符合条件的元素就可以得到最终结果)

anyMatch()、allMatch()、noneMatch()、findFirst()、findAny()

3、详细介绍

1)、forEach()

遍历。在并行操作中,这种方法不能保证按顺序执行。

2)、forEachOrdered()

遍历。保证了在顺序流和并行流中都按顺序执行。

3)、toArray()

将流转为数组。

4)、reduce()

是一个规约操作,所有的元素归约成一个结果值。三种调用方法,如下:

1. Optional reduce(BinaryOperator accumulator):一个参数,这个参数的名称accumulator(累加器),它的类型是一个函数式接口,这个接口是继承了BiFunction<T,U,R>,实现这个接口有两个输入,一个T类型,一个U类型,返回值是R类型。

2. T reduce(T identity, BinaryOperator accumulator):两个参数。第一个参数是初始值(限制必须是流元素类型),第二个参数跟方法一中参数一致。

3. U reduce(U identity, BiFunction<U,? super T,U> accumulator, BinaryOperator combiner):三个参数。前两个参数是对方法二的改进,此方法可以自定义初始值和返回值的类型。第三个参数用来合并并行流,也就是说只有使用了并行流,第三个参数才有意义。

String[] arr = {“1”,“2”,“3”,“4”,“5”,“6”};

Optional result1 = Stream.of(arr).reduce((e1, e2)->e1+e2);

String result2 = Stream.of(arr).reduce(“”,(e1,e2)->e1+e2);

Integer result3 = Stream.of(arr).reduce(0,(e1,e2)->Integer.valueOf(e1)+Integer.valueOf(e2),(arr1,arr2)->Integer.valueOf(arr1)+Integer.valueOf(arr2));

System.out.println(result1);
System.out.println(result2);
System.out.println(result3);

//输出:
Optional[123456]
123456
21

5)、collect()

收集。

1、 R collect(Supplier supplier, BiConsumer<R, ? super T> accumulator, BiConsumer<R, R> combiner);

2、<R, A> R collect(Collector<? super T, A, R> collector);

3、stream.collect(Collectors.toList())

4、stream.collect(Collectors.toSet())

5、stream.collect(Collectors.toCollection(Supplier collectionFactory))

6、stream.collect(Collectors.joining())

6)、max()

取最大值

String[] arr = {“apple”,“banana”,“waltermaleon”};
System.out.println(Stream.of(arr).max((e1,e2)-> {
return e1.length() - e2.length();
}).get());

//输出:
waltermaleon

7)、min()

取最小值

String[] arr = {“apple”,“banana”,“waltermaleon”};
System.out.println(Stream.of(arr).min((e1,e2)-> {
return e1.length() - e2.length();
}).get());

//输出:
apple

8)、count()

取流中元素的个数。

String[] arr = {“7”,“2”,“0”,“4”,“2”,“6”};
System.out.println(Stream.of(arr).count());
//输出:
6

9)、anyMatch()

任意匹配。对流中的元素进行判断,有任意一个匹配,则返回ture。否则返回false。

allMatch():完全匹配。对流中所有的元素进行判断,如果都满足返回true,否则返回false。

noneMatch():不匹配。判断数据流中没有一个元素与条件匹配的,返回true,否则返回false。

String[] arr = {“banana”,“peach”,“apple”,“orange”, “waltermaleon”, “grape”};
System.out.println(Stream.of(arr).anyMatch(e->e.equals(“apple”));

10)、findFirst()

获取流中的第一个元素。

findAny():获取流中任意一个元素,搭配parallel使用,才会生效。

String[] arr = {“banana”,“peach”,“apple”,“orange”, “waltermaleon”, “grape”};
Stream.of(arr).filter(e->e.length() == 5).parallel().findFirst().ifPresent(e-> System.out.println(e));

//输出:
peach

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值