3d数学相关

博客介绍了矩阵变换中沿任意轴旋转的相关推导链接,还详细讲解了向量点乘和叉乘。点乘记法有特定规则,结果反映两向量接近程度;叉乘记法、优先级有规定,不满足结合律,满足反交换律,其结果垂直于两向量,大小与平行四边形面积有关。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵变换:沿任意轴旋转及其推导: https://blog.csdn.net/zsq306650083/article/details/8773996 

向量点乘

术语“点乘”来自记法a·b中的点号,点乘中的点乘号不可省略。其优先级高于加法和减法。

[ x1  y1  z1 ] · [ x2  y2  z2 ] = x1x2 + y1y2 + z1z2

几何意义:点乘结果越大,2个向量越接近。

a·b = || a || || b || cosθ

θ为两向量夹角

向量叉乘:

术语“叉乘”来自于记法aXb中的叉号。叉乘号不能省略。叉乘优先级高于点乘。

[ x1  y1  z1 ] X [ x2  y2  z2 ] = [ y1z2-z1y2  z1x2-x1z2  x1y2-y1x2 ]

叉乘不满足结合律。满足反交换律:aXb = -(bXa)

几何意义:aXb垂直于a、b,指向a、b所在平面的正上方,大小为以a、b为两边的平行四边形的面积,即为||a|| ||b|| sinθ。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值