P2569 [SCOI2010]股票交易

本文介绍了一个关于股票投资的问题,其中涉及到股票买入、卖出价格、每日交易限制和交易间隔的规定。作者提出了使用动态规划和单调队列优化的方法来解决如何在给定条件下实现最大收益的问题,并给出了具体的算法实现。该算法的时间复杂度为O(T*MaxP),适用于处理大规模数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接
题目描述
最近 lxhgww \text{lxhgww} lxhgww 又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律。

通过一段时间的观察, lxhgww \text{lxhgww} lxhgww 预测到了未来 T T T 天内某只股票的走势,第 i i i 天的股票买入价为每股 A P i AP_i APi,第 i i i 天的股票卖出价为每股 B P i BP_i BPi(数据保证对于每个 i i i,都有 A P i ≥ B P i AP_i \geq BP_i APiBPi),但是每天不能无限制地交易,于是股票交易所规定第 i i i 天的一次买入至多只能购买 A S i AS_i ASi 股,一次卖出至多只能卖出 B S i BS_i BSi 股。

另外,股票交易所还制定了两个规定。为了避免大家疯狂交易,股票交易所规定在两次交易(某一天的买入或者卖出均算是一次交易)之间,至少要间隔 W W W 天,也就是说如果在第 i i i 天发生了交易,那么从第 i + 1 i+1 i+1 天到第 i + W i+W i+W 天,均不能发生交易。同时,为了避免垄断,股票交易所还规定在任何时间,一个人的手里的股票数不能超过 MaxP \text{MaxP} MaxP

在第 1 1 1 天之前, lxhgww \text{lxhgww} lxhgww 手里有一大笔钱(可以认为钱的数目无限),但是没有任何股票,当然, T T T 天以后, lxhgww \text{lxhgww} lxhgww 想要赚到最多的钱,聪明的程序员们,你们能帮助他吗?

输入输出格式
输入格式

输入数据第一行包括 3 3 3 个整数,分别是 T T T MaxP \text{MaxP} MaxP W W W

接下来 T T T 行,第 i i i 行代表第 i − 1 i-1 i1 天的股票走势,每行 4 4 4 个整数,分别表示 A P i ,   B P i ,   A S i ,   B S i AP_i,\ BP_i,\ AS_i,\ BS_i APi, BPi, ASi, BSi
输出格式

输出数据为一行,包括 1 1 1 个数字,表示 lxhgww \text{lxhgww} lxhgww 能赚到的最多的钱数。

输入输出样例
输入样例 #1

5 2 0
2 1 1 1
2 1 1 1
3 2 1 1
4 3 1 1
5 4 1 1

输出样例 #1

3

说明
对于 30 % 30\% 30% 的数据, 0 ≤ W < T ≤ 50 , 1 ≤ MaxP ≤ 50 0\leq W<T\leq 50,1\leq\text{MaxP}\leq50 0W<T50,1MaxP50

对于 50 % 50\% 50% 的数据, 0 ≤ W < T ≤ 2000 , 1 ≤ MaxP ≤ 50 0\leq W<T\leq 2000,1\leq\text{MaxP}\leq50 0W<T2000,1MaxP50

对于 100 % 100\% 100% 的数据, 0 ≤ W < T ≤ 2000 , 1 ≤ MaxP ≤ 2000 0\leq W<T\leq 2000,1\leq\text{MaxP}\leq2000 0W<T2000,1MaxP2000

对于所有的数据, 1 ≤ B P i ≤ A P i ≤ 1000 , 1 ≤ A S i , B S i ≤ MaxP 1\leq BP_i\leq AP_i\leq 1000,1\leq AS_i,BS_i\leq\text{MaxP} 1BPiAPi1000,1ASi,BSiMaxP

f [ i ] [ j ] f[i][j] f[i][j] 表示第 i i i 天有 j j j 张股票时赚的最大钱数,则
f [ i ] [ j ] = max ⁡ ( f [ i − 1 ] [ j ] , − A P ⋅ j , f [ i − M − 1 ] [ j + k ] + k ⋅ B P , f [ i − M − 1 ] [ j − k ] − k ⋅ A P ) f[i][j]=\max(f[i-1][j],-AP\cdot j,f[i-M-1][j+k]+k\cdot BP,f[i-M-1][j-k]-k\cdot AP) f[i][j]=max(f[i1][j],APj,f[iM1][j+k]+kBP,f[iM1][jk]kAP)
考虑单调队列优化,时间复杂度为 O ( T ⋅ M a x P ) O(T\cdot MaxP) O(TMaxP)

#include<bits/stdc++.h>

using namespace std;
const int N = 2e3 + 10;
int T, MaxP, W, AP, BP, AS, BS;
int q[N], f[N][N];

int main() {
    scanf("%d%d%d", &T, &MaxP, &W);
    memset(f[0] + 1, -0x3f, sizeof(int) * MaxP);
    for (int i = 1; i <= T; i++) {
        scanf("%d%d%d%d", &AP, &BP, &AS, &BS);
        memcpy(f[i], f[i - 1], sizeof(int) * (MaxP + 1));
        for (int j = 1; j <= AS; j++)f[i][j] = max(f[i][j], -AP * j);
        if (i <= W + 1)continue;
        int l = 1, r = 0, k = i - W - 1;
        for (int j = MaxP; j >= 0; j--) {
            while (l <= r && f[k][q[r]] + BP * q[r] <= f[k][j] + BP * j)r--;
            q[++r] = j;
            while (l <= r && q[l] - q[r] > BS)l++;
            f[i][j] = max(f[i][j], f[k][q[l]] + BP * (q[l] - j));
        }
        l = 1, r = 0;
        for (int j = 0; j <= MaxP; j++) {
            while (l <= r && f[k][q[r]] + AP * q[r] <= f[k][j] + AP * j)r--;
            q[++r] = j;
            while (l <= r && q[r] - q[l] > AS)l++;
            f[i][j] = max(f[i][j], f[k][q[l]] - AP * (j - q[l]));
        }
    }
    printf("%d\n", *max_element(f[T], f[T] + MaxP + 1));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_sky123_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值