题目链接
题目描述
最近
lxhgww
\text{lxhgww}
lxhgww 又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律。
通过一段时间的观察, lxhgww \text{lxhgww} lxhgww 预测到了未来 T T T 天内某只股票的走势,第 i i i 天的股票买入价为每股 A P i AP_i APi,第 i i i 天的股票卖出价为每股 B P i BP_i BPi(数据保证对于每个 i i i,都有 A P i ≥ B P i AP_i \geq BP_i APi≥BPi),但是每天不能无限制地交易,于是股票交易所规定第 i i i 天的一次买入至多只能购买 A S i AS_i ASi 股,一次卖出至多只能卖出 B S i BS_i BSi 股。
另外,股票交易所还制定了两个规定。为了避免大家疯狂交易,股票交易所规定在两次交易(某一天的买入或者卖出均算是一次交易)之间,至少要间隔 W W W 天,也就是说如果在第 i i i 天发生了交易,那么从第 i + 1 i+1 i+1 天到第 i + W i+W i+W 天,均不能发生交易。同时,为了避免垄断,股票交易所还规定在任何时间,一个人的手里的股票数不能超过 MaxP \text{MaxP} MaxP。
在第 1 1 1 天之前, lxhgww \text{lxhgww} lxhgww 手里有一大笔钱(可以认为钱的数目无限),但是没有任何股票,当然, T T T 天以后, lxhgww \text{lxhgww} lxhgww 想要赚到最多的钱,聪明的程序员们,你们能帮助他吗?
输入输出格式
输入格式
输入数据第一行包括 3 3 3 个整数,分别是 T T T, MaxP \text{MaxP} MaxP, W W W。
接下来
T
T
T 行,第
i
i
i 行代表第
i
−
1
i-1
i−1 天的股票走势,每行
4
4
4 个整数,分别表示
A
P
i
,
B
P
i
,
A
S
i
,
B
S
i
AP_i,\ BP_i,\ AS_i,\ BS_i
APi, BPi, ASi, BSi。
输出格式
输出数据为一行,包括 1 1 1 个数字,表示 lxhgww \text{lxhgww} lxhgww 能赚到的最多的钱数。
输入输出样例
输入样例 #1
5 2 0
2 1 1 1
2 1 1 1
3 2 1 1
4 3 1 1
5 4 1 1
输出样例 #1
3
说明
对于
30
%
30\%
30% 的数据,
0
≤
W
<
T
≤
50
,
1
≤
MaxP
≤
50
0\leq W<T\leq 50,1\leq\text{MaxP}\leq50
0≤W<T≤50,1≤MaxP≤50
对于 50 % 50\% 50% 的数据, 0 ≤ W < T ≤ 2000 , 1 ≤ MaxP ≤ 50 0\leq W<T\leq 2000,1\leq\text{MaxP}\leq50 0≤W<T≤2000,1≤MaxP≤50
对于 100 % 100\% 100% 的数据, 0 ≤ W < T ≤ 2000 , 1 ≤ MaxP ≤ 2000 0\leq W<T\leq 2000,1\leq\text{MaxP}\leq2000 0≤W<T≤2000,1≤MaxP≤2000
对于所有的数据, 1 ≤ B P i ≤ A P i ≤ 1000 , 1 ≤ A S i , B S i ≤ MaxP 1\leq BP_i\leq AP_i\leq 1000,1\leq AS_i,BS_i\leq\text{MaxP} 1≤BPi≤APi≤1000,1≤ASi,BSi≤MaxP
f
[
i
]
[
j
]
f[i][j]
f[i][j] 表示第
i
i
i 天有
j
j
j 张股票时赚的最大钱数,则
f
[
i
]
[
j
]
=
max
(
f
[
i
−
1
]
[
j
]
,
−
A
P
⋅
j
,
f
[
i
−
M
−
1
]
[
j
+
k
]
+
k
⋅
B
P
,
f
[
i
−
M
−
1
]
[
j
−
k
]
−
k
⋅
A
P
)
f[i][j]=\max(f[i-1][j],-AP\cdot j,f[i-M-1][j+k]+k\cdot BP,f[i-M-1][j-k]-k\cdot AP)
f[i][j]=max(f[i−1][j],−AP⋅j,f[i−M−1][j+k]+k⋅BP,f[i−M−1][j−k]−k⋅AP)
考虑单调队列优化,时间复杂度为
O
(
T
⋅
M
a
x
P
)
O(T\cdot MaxP)
O(T⋅MaxP) 。
#include<bits/stdc++.h>
using namespace std;
const int N = 2e3 + 10;
int T, MaxP, W, AP, BP, AS, BS;
int q[N], f[N][N];
int main() {
scanf("%d%d%d", &T, &MaxP, &W);
memset(f[0] + 1, -0x3f, sizeof(int) * MaxP);
for (int i = 1; i <= T; i++) {
scanf("%d%d%d%d", &AP, &BP, &AS, &BS);
memcpy(f[i], f[i - 1], sizeof(int) * (MaxP + 1));
for (int j = 1; j <= AS; j++)f[i][j] = max(f[i][j], -AP * j);
if (i <= W + 1)continue;
int l = 1, r = 0, k = i - W - 1;
for (int j = MaxP; j >= 0; j--) {
while (l <= r && f[k][q[r]] + BP * q[r] <= f[k][j] + BP * j)r--;
q[++r] = j;
while (l <= r && q[l] - q[r] > BS)l++;
f[i][j] = max(f[i][j], f[k][q[l]] + BP * (q[l] - j));
}
l = 1, r = 0;
for (int j = 0; j <= MaxP; j++) {
while (l <= r && f[k][q[r]] + AP * q[r] <= f[k][j] + AP * j)r--;
q[++r] = j;
while (l <= r && q[r] - q[l] > AS)l++;
f[i][j] = max(f[i][j], f[k][q[l]] - AP * (j - q[l]));
}
}
printf("%d\n", *max_element(f[T], f[T] + MaxP + 1));
return 0;
}