tensorflow(非线性回归)

本文详细介绍如何使用TensorFlow和Python构建并训练一个简单的神经网络,以预测随机生成数据的平方值。通过调整隐藏层参数和优化算法,展示神经网络的学习过程,并利用matplotlib进行结果可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import os
# os.environ["TF_CPP_MIN_LOG_LEVEL"]='1' # 这是默认的显示等级,显示所有信息
os.environ["TF_CPP_MIN_LOG_LEVEL"]='2' # 只显示 warning 和 Error
# os.environ["TF_CPP_MIN_LOG_LEVEL"]='3' # 只显示 Error


import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

# 生成二百个随即点
x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis]
noise  = np.random.normal(0,0.02,x_data.shape)
y_data = np.square(x_data) + noise
# plt.plot(x_data,y_data)
# plt.show()

# 定义两个placeholder
x = tf.placeholder(tf.float32,[None,1])
y = tf.placeholder(tf.float32,[None,1])

#定义神经网络的中间层
Weight_L1 = tf.Variable(tf.random_normal([1,10]))
biases_L1 = tf.Variable(tf.zeros([1,10])) #偏置的总和
Wx_plus_b_L1 = tf.matmul(x,Weight_L1) + biases_L1

L1 = tf.nn.tanh(Wx_plus_b_L1)

#定义输出层
Weight_L2 = tf.Variable(tf.random_normal([10,1]))
biases_L2 = tf.Variable(tf.zeros([1,1]))
Wx_plus_b_L2 = tf.matmul(L1,Weight_L2) + biases_L2

prediction = tf.nn.tanh(Wx_plus_b_L2)
#二次代价函数
loss = tf.reduce_mean(tf.square(y - prediction))
# 梯度下降
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for _ in range(2000):
        sess.run(train_step,feed_dict={x:x_data,y:y_data})
        # 获得预测值
    prediction_value = sess.run(prediction,feed_dict={x:x_data})
        # 画图
    plt.figure()
    plt.scatter(x_data,y_data)
    plt.plot(x_data,prediction_value,'r-',lw = 5)
    plt.show()

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闲云野鹤01

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值