import os
# os.environ["TF_CPP_MIN_LOG_LEVEL"]='1' # 这是默认的显示等级,显示所有信息
os.environ["TF_CPP_MIN_LOG_LEVEL"]='2' # 只显示 warning 和 Error
# os.environ["TF_CPP_MIN_LOG_LEVEL"]='3' # 只显示 Error
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# 生成二百个随即点
x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis]
noise = np.random.normal(0,0.02,x_data.shape)
y_data = np.square(x_data) + noise
# plt.plot(x_data,y_data)
# plt.show()
# 定义两个placeholder
x = tf.placeholder(tf.float32,[None,1])
y = tf.placeholder(tf.float32,[None,1])
#定义神经网络的中间层
Weight_L1 = tf.Variable(tf.random_normal([1,10]))
biases_L1 = tf.Variable(tf.zeros([1,10])) #偏置的总和
Wx_plus_b_L1 = tf.matmul(x,Weight_L1) + biases_L1
L1 = tf.nn.tanh(Wx_plus_b_L1)
#定义输出层
Weight_L2 = tf.Variable(tf.random_normal([10,1]))
biases_L2 = tf.Variable(tf.zeros([1,1]))
Wx_plus_b_L2 = tf.matmul(L1,Weight_L2) + biases_L2
prediction = tf.nn.tanh(Wx_plus_b_L2)
#二次代价函数
loss = tf.reduce_mean(tf.square(y - prediction))
# 梯度下降
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for _ in range(2000):
sess.run(train_step,feed_dict={x:x_data,y:y_data})
# 获得预测值
prediction_value = sess.run(prediction,feed_dict={x:x_data})
# 画图
plt.figure()
plt.scatter(x_data,y_data)
plt.plot(x_data,prediction_value,'r-',lw = 5)
plt.show()