Browse free open source Python Algorithms and projects below. Use the toggles on the left to filter open source Python Algorithms by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 1
    Clipper

    Clipper

    Polygon and line clipping and offsetting library (C++, C#, Delphi)

    This library is now obsolete and no longer being maintained. It has been superceded by my Clipper2 library - https://github.com/AngusJohnson/Clipper2.
    Leader badge
    Downloads: 5,517 This Week
    Last Update:
    See Project
  • 2
    GFPGAN

    GFPGAN

    GFPGAN aims at developing Practical Algorithms

    GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration. Colab Demo for GFPGAN; (Another Colab Demo for the original paper model) Online demo: Huggingface (return only the cropped face) Online demo: Replicate.ai (may need to sign in, return the whole image). Online demo: Baseten.co (backed by GPU, returns the whole image). We provide a clean version of GFPGAN, which can run without CUDA extensions. So that it can run in Windows or on CPU mode. GFPGAN aims at developing a Practical Algorithm for Real-world Face Restoration. It leverages rich and diverse priors encapsulated in a pretrained face GAN (e.g., StyleGAN2) for blind face restoration. Add V1.3 model, which produces more natural restoration results, and better results on very low-quality / high-quality inputs.
    Downloads: 103 This Week
    Last Update:
    See Project
  • 3
    ImageAI

    ImageAI

    A python library built to empower developers

    ImageAI is an easy-to-use Computer Vision Python library that empowers developers to easily integrate state-of-the-art Artificial Intelligence features into their new and existing applications and systems. It is used by thousands of developers, students, researchers, tutors and experts in corporate organizations around the world. You will find features supported, links to official documentation as well as articles on ImageAI. ImageAI is widely used around the world by professionals, students, research groups and businesses. ImageAI provides API to recognize 1000 different objects in a picture using pre-trained models that were trained on the ImageNet-1000 dataset. The model implementations provided are SqueezeNet, ResNet, InceptionV3 and DenseNet. ImageAI provides API to detect, locate and identify 80 most common objects in everyday life in a picture using pre-trained models that were trained on the COCO Dataset.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 4
    JavaBlock
    Free Java Flowchart simulator / interpreter
    Leader badge
    Downloads: 110 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. This exciting yet challenging field is commonly referred as outlier detection or anomaly detection. PyOD includes more than 30 detection algorithms, from classical LOF (SIGMOD 2000) to the latest COPOD (ICDM 2020) and SUOD (MLSys 2021). Since 2017, PyOD [AZNL19] has been successfully used in numerous academic researches and commercial products [AZHC+21, AZNHL19]. PyOD has multiple neural network-based models, e.g., AutoEncoders, which are implemented in both PyTorch and Tensorflow. PyOD contains multiple models that also exist in scikit-learn. It is possible to train and predict with a large number of detection models in PyOD by leveraging SUOD framework. A benchmark is supplied for select algorithms to provide an overview of the implemented models. In total, 17 benchmark datasets are used for comparison, which can be downloaded at ODDS.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    MADDPG

    MADDPG

    Code for the MADDPG algorithm from a paper

    MADDPG (Multi-Agent Deep Deterministic Policy Gradient) is the official code release from OpenAI’s paper Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. The repository implements a multi-agent reinforcement learning algorithm that extends DDPG to scenarios where multiple agents interact in shared environments. Each agent has its own policy, but training uses centralized critics conditioned on the observations and actions of all agents, enabling learning in cooperative, competitive, and mixed settings. The code is built on top of TensorFlow and integrates with the Multiagent Particle Environments (MPE) for benchmarking. Researchers can use it to reproduce the experiments presented in the paper, which demonstrate how agents learn behaviors such as coordination, competition, and communication. Although archived, MADDPG remains a widely cited baseline in multi-agent reinforcement learning research and has inspired further algorithmic developments.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Real-ESRGAN

    Real-ESRGAN

    Real-ESRGAN aims at developing Practical Algorithms

    Real-ESRGAN is a highly popular open-source project that provides practical algorithms for general image and video restoration using deep learning-based super-resolution techniques. It extends the original Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) approach by training on synthetic degradations to make results more robust on real-world images, effectively enhancing resolution, reducing noise/artifacts, and reconstructing fine detail in low-quality imagery. The repository includes inference and training scripts, a model zoo with different pretrained models (including general and anime-oriented variants), and support for batch and arbitrary scaling, making it adaptable for diverse enhancement tasks. It emphasizes usability with utilities that handle alpha channels, gray/16-bit images, and tiled inference for large inputs, and can be run via Python scripts or portable executables.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    TextDistance

    TextDistance

    Compute distance between sequences

    Python library for comparing the distance between two or more sequences by many algorithms. For main algorithms, text distance try to call known external libraries (fastest first) if available (installed in your system) and possible (this implementation can compare this type of sequences). Install text distance with extras for this feature. Textdistance use benchmark results for algorithm optimization and try to call the fastest external lib first (if possible). TextDistance show benchmarks results table for your system and saves libraries priorities into the libraries.json file in TextDistance's folder. This file will be used by text distance for calling the fastest algorithm implementation. Default libraries.json is already included in the package.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    TorBot

    TorBot

    Dark Web OSINT Tool

    Contributions to this project are always welcome. To add a new feature fork the dev branch and give a pull request when your new feature is tested and complete. If its a new module, it should be put inside the modules directory. The branch name should be your new feature name in the format <Feature_featurename_version(optional)>. On Linux platforms, you can make an executable for TorBot by using the install.sh script. You will need to give the script the correct permissions using chmod +x install.sh Now you can run ./install.sh to create the torBot binary. Run ./torBot to execute the program. Crawl custom domains.(Completed). Check if the link is live.(Completed). Built-in Updater.(Completed). TorBot GUI (In progress). Social Media integration.(not Started).
    Downloads: 3 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 10
    YAPF

    YAPF

    A formatter for Python files

    YAPF is a Python code formatter that automatically rewrites source to match a chosen style, using a clang-format–inspired algorithm to search for the “best” layout under your rules. Instead of relying on a fixed set of heuristics, it explores formatting decisions and chooses the lowest-cost result, aiming to produce code a human would write when following a style guide. You can run it as a command-line tool or call it as a library via FormatCode / FormatFile, making it easy to embed in editors, CI, and custom tooling. Styles are highly configurable: start from presets like pep8, google, yapf, or facebook, then override dozens of options in .style.yapf, setup.cfg, or pyproject.toml. It supports recursive directory formatting, line-range formatting, and diff-only output so you can check or fix just the lines you touched.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    Detectron2

    Detectron2

    Next-generation platform for object detection and segmentation

    Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up rewrite of the previous version, Detectron, and it originates from maskrcnn-benchmark. It is powered by the PyTorch deep learning framework. Includes more features such as panoptic segmentation, Densepose, Cascade R-CNN, rotated bounding boxes, PointRend, DeepLab, etc. Can be used as a library to support different projects on top of it. We'll open source more research projects in this way. It trains much faster. Models can be exported to TorchScript format or Caffe2 format for deployment. With a new, more modular design, Detectron2 is flexible and extensible, and able to provide fast training on single or multiple GPU servers. Detectron2 includes high-quality implementations of state-of-the-art object detection.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no assumptions about the structure of your agent, and is compatible with any numerical computation library, such as TensorFlow or Theano. The gym library is a collection of test problems — environments — that you can use to work out your reinforcement learning algorithms. These environments have a shared interface, allowing you to write general algorithms.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    Pythonic Data Structures and Algorithms

    Pythonic Data Structures and Algorithms

    Minimal examples of data structures and algorithms in Python

    The Pythonic Data Structures and Algorithms repository by keon is a hands-on collection of implementations of classical data structures and algorithms written in Python. It offers working, often well-commented code for many standard algorithmic problems — from sorting/searching to graph algorithms, dynamic programming, data structures, and more — making it a valuable resource for learning and reference. For students preparing for technical interviews, self-learners brushing up on fundamentals, or developers wanting to understand algorithm internals, this repository provides ready-to-run examples, and can serve as a sandbox to experiment, benchmark, or adapt code. Because it’s in pure Python, it’s easy to read and modify, making it accessible even to those with modest programming experience. The repo helps bridge the gap between theoretical algorithm descriptions and real-world code, giving concrete, working implementations that one can study, debug, or extend.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    DomainBed

    DomainBed

    DomainBed is a suite to test domain generalization algorithms

    DomainBed is a PyTorch-based research suite created by Facebook Research for benchmarking and evaluating domain generalization algorithms. It provides a unified framework for comparing methods that aim to train models capable of performing well across unseen domains, as introduced in the paper In Search of Lost Domain Generalization. The library includes a wide range of well-known domain generalization algorithms, from classical baselines such as Empirical Risk Minimization (ERM) and Invariant Risk Minimization (IRM) to more advanced techniques like Domain Adversarial Neural Networks (DANN), Adaptive Risk Minimization (ARM), and Invariance Principle Meets Information Bottleneck (IB-ERM/IB-IRM). DomainBed also integrates multiple standard datasets—including RotatedMNIST, PACS, VLCS, Office-Home, DomainNet, and subsets from WILDS—allowing consistent experimentation across image classification tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Modular toolkit for Data Processing MDP
    The Modular toolkit for Data Processing (MDP) is a Python data processing framework. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded. The implementation of new algorithms is easy and intuitive. The new implemented units are then automatically integrated with the rest of the library. The base of available algorithms is steadily increasing and includes signal processing methods (Principal Component Analysis, Independent Component Analysis, Slow Feature Analysis), manifold learning methods ([Hessian] Locally Linear Embedding), several classifiers, probabilistic methods (Factor Analysis, RBM), data pre-processing methods, and many others.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 16
    Evolving Objects

    Evolving Objects

    This project have been merged within Paradiseo.

    See the new project page: https://nojhan.github.io/paradiseo/ (Archived project page: http://eodev.sourceforge.net/)
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    Digraph3

    Digraph3

    A collection of python3 modules for Algorithmic Decision Theory

    This collection of Python3 modules provides a large range of implemented decision aiding algorithms useful in the field of outranking digraphs based Multiple Criteria Decision Aid (MCDA), especially best choice, linear ranking and absolute or relative rating algorithms with multiple incommensurable criteria. Technical documentation and tutorials are available under the following link: https://digraph3.readthedocs.io/en/latest/ The tutorials introduce the main objects like digraphs, outranking digraphs and performance tableaux. There is also a tutorial provided on undirected graphs. Some tutorials are problem oriented and show how to compute the winner of an election, how to build a best choice recommendation, or how to linearly rank or rate with multiple incommensurable performance criteria. Other tutorials concern more specifically operational aspects of computing maximal independent sets (MISs) and kernels in graphs and digraphs.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    PixelCode

    PixelCode

    Editor de Codigo para Python

    Es un editor de código ligero y fácil de usar, diseñado específicamente para la programación en Python. Su interfaz intuitiva permite a los usuarios, tanto principiantes como experimentados, escribir, editar y ejecutar código de manera eficiente.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    Bit operations on integers for Python - fast C implementation of bit extraction, counting, reversal etc.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    Python functions that Googlers have found useful.
    Leader badge
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    KaHaShEr

    KaHaShEr

    File checksum generator and verifier.

    KaHaShEr is an application to check the integrity of a file using MD5, SHA1, SHA256 and SHA512 checksum. Designed to be smart and easy to use, it includes a feature that can detect a hexadecimal value in the clipboard and automatically perform the verification while notifying you with a very expressive sound of the outcome of this verification.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    A univariate and multivariate analysis UI. This project is no longer under development. Please use as you wish.
    Leader badge
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Sudoku Maker is a generator for Sudoku number puzzles. It uses a genetic algorithm internally, so it can serve as an introduction to genetic algorithms. The generated Sudokus are usually very hard to solve -- good for getting rid of a Sudoku addiction.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    3D Box rotation

    3D Box rotation

    Simple example of draw and rotate 3D box

    Simple source .java file; .bat for fast re-compile and run; and pre-compiled .jar Java program with example from scratch writed in Notepad++ without Eclipse, etc., How to draw and rotate 3D box most simple way. Rotation speed regulated in simple Loop with 10 ms sleep. Use Java version 8 (OpenJDK 8, OracleJDK 8, OracleJRE 8, ..). Higher versions have an anti-aliasing error in the BufferedImage ( Windows 10 ). Python version with tkinter and math imports. Including calculated faces, moving lights and shadows only with CPU.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Based on the introduction of Genetic Algorithms in the excellent book "Collective Intelligence" I have put together some python classes to extend the original concepts.
    Downloads: 0 This Week
    Last Update:
    See Project