Compare the Top ML Model Deployment Tools in India as of June 2025 - Page 2

  • 1
    Metaflow

    Metaflow

    Metaflow

    Successful data science projects are delivered by data scientists who can build, improve, and operate end-to-end workflows independently, focusing more on data science, less on engineering. Use Metaflow with your favorite data science libraries, such as Tensorflow or SciKit Learn, and write your models in idiomatic Python code with not much new to learn. Metaflow also supports the R language. Metaflow helps you design your workflow, run it at scale, and deploy it to production. It versions and tracks all your experiments and data automatically. It allows you to inspect results easily in notebooks. Metaflow comes packaged with the tutorials, so getting started is easy. You can make copies of all the tutorials in your current directory using the metaflow command line interface.
  • 2
    ONNX

    ONNX

    ONNX

    ONNX defines a common set of operators - the building blocks of machine learning and deep learning models - and a common file format to enable AI developers to use models with a variety of frameworks, tools, runtimes, and compilers. Develop in your preferred framework without worrying about downstream inferencing implications. ONNX enables you to use your preferred framework with your chosen inference engine. ONNX makes it easier to access hardware optimizations. Use ONNX-compatible runtimes and libraries designed to maximize performance across hardware. Our active community thrives under our open governance structure, which provides transparency and inclusion. We encourage you to engage and contribute.
  • 3
    Azure AI Foundry
    Azure AI Foundry is a unified application platform for your entire organization in the age of AI. Azure AI Foundry helps bridge the gap between cutting-edge AI technologies and practical business applications, empowering organizations to harness the full potential of AI efficiently and effectively. Azure AI Foundry is designed to empower your entire organization—developers, AI engineers, and IT professionals—to customize, host, run, and manage AI solutions with greater ease and confidence. This unified approach simplifies the development and management process, helping all stakeholders focus on driving innovation and achieving strategic goals. Azure AI Foundry Agent Service is a powerful component designed to facilitate the seamless operation of AI agents throughout the entire lifecycle—from development and deployment to production.
  • 4
    Intel Open Edge Platform
    The Intel Open Edge Platform simplifies the development, deployment, and scaling of AI and edge computing solutions on standard hardware with cloud-like efficiency. It provides a curated set of components and workflows that accelerate AI model creation, optimization, and application development. From vision models to generative AI and large language models (LLM), the platform offers tools to streamline model training and inference. By integrating Intel’s OpenVINO toolkit, it ensures enhanced performance on Intel CPUs, GPUs, and VPUs, allowing organizations to bring AI applications to the edge with ease.
  • 5
    01.AI

    01.AI

    01.AI

    01.AI offers a comprehensive AI/ML model deployment platform that simplifies the process of training, deploying, and managing machine learning models at scale. It provides powerful tools for businesses to integrate AI into their operations with minimal technical complexity. 01.AI supports end-to-end AI solutions, including model training, fine-tuning, inference, and monitoring. 01. AI's services help businesses optimize their AI workflows, allowing teams to focus on model performance rather than infrastructure. It is designed to support various industries, including finance, healthcare, and manufacturing, offering scalable solutions that enhance decision-making and automate complex tasks.
  • 6
    Amazon SageMaker Unified Studio
    Amazon SageMaker Unified Studio is a comprehensive, AI and data development environment designed to streamline workflows and simplify the process of building and deploying machine learning models. Built on Amazon DataZone, it integrates various AWS analytics and AI/ML services, such as Amazon EMR, AWS Glue, and Amazon Bedrock, into a single platform. Users can discover, access, and process data from various sources like Amazon S3 and Redshift, and develop generative AI applications. With tools for model development, governance, MLOps, and AI customization, SageMaker Unified Studio provides an efficient, secure, and collaborative environment for data teams.
  • 7
    LaunchX

    LaunchX

    Nota AI

    Optimized AI is ready to launch on-device and allows you to deploy your AI models on actual devices. With LaunchX automation, you can simplify conversion and effortlessly measure performance on target devices. Customize the AI platform to meet your hardware specifications. Enable seamless AI model deployment with a tailored software stack. Nota’s AI technology empowers intelligent transportation systems, facial recognition, and security and surveillance. The company’s solutions include a driver monitoring system, driver authentication, and smart access control system. Nota‘s current projects cover a wide range of industries including construction, mobility, security, smart home, and healthcare. Nota’s partnership with top-tier global market leaders including Nvidia, Intel, and ARM has helped accelerate its entry into the global market.
  • 8
    SwarmOne

    SwarmOne

    SwarmOne

    SwarmOne is an autonomous infrastructure platform designed to streamline the entire AI lifecycle, from training to deployment, by automating and optimizing AI workloads across any environment. With just two lines of code and a one-click hardware installation, users can initiate instant AI training, evaluation, and deployment. It supports both code and no-code workflows, enabling seamless integration with any framework, IDE, or operating system, and is compatible with any GPU brand, quantity, or generation. SwarmOne's self-setting architecture autonomously manages resource allocation, workload orchestration, and infrastructure swarming, eliminating the need for Docker, MLOps, or DevOps. Its cognitive infrastructure layer and burst-to-cloud engine ensure optimal performance, whether on-premises or in the cloud. By automating tasks that typically hinder AI model development, SwarmOne allows data scientists to focus exclusively on scientific work, maximizing GPU utilization.
  • 9
    Windows AI Foundry
    Windows AI Foundry is a unified, reliable, and secure platform supporting the AI developer lifecycle from model selection, fine-tuning, optimizing, and deployment across CPU, GPU, NPU, and cloud. It integrates tools like Windows ML, enabling developers to bring their own models and deploy them efficiently across the silicon partner ecosystem, including AMD, Intel, NVIDIA, and Qualcomm, spanning CPU, GPU, and NPU. Foundry Local allows developers to pull in their favorite open source models and make their apps smarter. It offers ready-to-use AI APIs powered by on-device models, optimized for efficiency and performance on Copilot+ PC devices with minimal setup required. These APIs include capabilities such as text recognition (OCR), image super resolution, image segmentation, image description, and object erasing. Developers can customize Windows inbox models with their own data using LoRA for Phi Silica.
  • 10
    QpiAI

    QpiAI

    QpiAI

    QpiAI Pro is a no-code AutoML and MLOps platform designed to empower AI development with generative AI tools for automated data annotation, foundation model tuning, and scalable deployment. It offers flexible deployment solutions tailored to meet unique enterprise needs, including cloud VPC deployment within enterprise VPC on the public cloud, managed service on public cloud with integrated QpiAI serverless billing infrastructure, and enterprise data center deployment for complete control over security and compliance. These options enhance operational efficiency and provide end-to-end access to platform functionalities. QpiAI Pro is part of QpiAI's suite of products that integrate AI and quantum technologies in enterprise solutions, aiming to solve complex scientific and business problems across various industries.
  • 11
    H2O.ai

    H2O.ai

    H2O.ai

    H2O.ai is the open source leader in AI and machine learning with a mission to democratize AI for everyone. Our industry-leading enterprise-ready platforms are used by hundreds of thousands of data scientists in over 20,000 organizations globally. We empower every company to be an AI company in financial services, insurance, healthcare, telco, retail, pharmaceutical, and marketing and delivering real value and transforming businesses today.
  • 12
    DVC

    DVC

    iterative.ai

    Data Version Control (DVC) is an open source version control system tailored for data science and machine learning projects. It offers a Git-like experience to organize data, models, and experiments, enabling users to manage and version images, audio, video, and text files in storage, and to structure their machine learning modeling process into a reproducible workflow. DVC integrates seamlessly with existing software engineering tools, allowing teams to define any aspect of their machine learning projects, data and model versions, pipelines, and experiments, in human-readable metafiles. This approach facilitates the use of best practices and established engineering toolsets, reducing the gap between data science and software engineering. By leveraging Git, DVC enables versioning and sharing of entire machine learning projects, including source code, configurations, parameters, metrics, data assets, and processes, by committing DVC metafiles as placeholders.
  • 13
    Perception Platform

    Perception Platform

    Intuition Machines

    The Perception Platform by Intuition Machines automates the entire lifecycle of machine learning models—from training to deployment and continuous improvement. Featuring advanced active learning, the platform enables models to evolve by learning from new data and human interaction, enhancing accuracy while reducing manual oversight. Robust APIs facilitate seamless integration with existing systems, making it scalable and easy to adopt across diverse AI/ML applications.