Compare the Top On-Premises ML Model Deployment Tools as of July 2025

What are On-Premises ML Model Deployment Tools?

Machine learning model deployment tools, also known as model serving tools, are platforms and software solutions that facilitate the process of deploying machine learning models into production environments for real-time or batch inference. These tools help automate the integration, scaling, and monitoring of models after they have been trained, enabling them to be used by applications, services, or products. They offer functionalities such as model versioning, API creation, containerization (e.g., Docker), and orchestration (e.g., Kubernetes), ensuring that the models can be deployed, maintained, and updated seamlessly. These tools also monitor model performance over time, helping teams detect model drift and maintain accuracy. Compare and read user reviews of the best On-Premises ML Model Deployment tools currently available using the table below. This list is updated regularly.

  • 1
    TensorFlow

    TensorFlow

    TensorFlow

    An end-to-end open source machine learning platform. TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications. Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging. Easily train and deploy models in the cloud, on-prem, in the browser, or on-device no matter what language you use. A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster. Build, deploy, and experiment easily with TensorFlow.
    Starting Price: Free
  • 2
    Docker

    Docker

    Docker

    Docker takes away repetitive, mundane configuration tasks and is used throughout the development lifecycle for fast, easy and portable application development, desktop and cloud. Docker’s comprehensive end-to-end platform includes UIs, CLIs, APIs and security that are engineered to work together across the entire application delivery lifecycle. Get a head start on your coding by leveraging Docker images to efficiently develop your own unique applications on Windows and Mac. Create your multi-container application using Docker Compose. Integrate with your favorite tools throughout your development pipeline, Docker works with all development tools you use including VS Code, CircleCI and GitHub. Package applications as portable container images to run in any environment consistently from on-premises Kubernetes to AWS ECS, Azure ACI, Google GKE and more. Leverage Docker Trusted Content, including Docker Official Images and images from Docker Verified Publishers.
    Starting Price: $7 per month
  • 3
    Ray

    Ray

    Anyscale

    Develop on your laptop and then scale the same Python code elastically across hundreds of nodes or GPUs on any cloud, with no changes. Ray translates existing Python concepts to the distributed setting, allowing any serial application to be easily parallelized with minimal code changes. Easily scale compute-heavy machine learning workloads like deep learning, model serving, and hyperparameter tuning with a strong ecosystem of distributed libraries. Scale existing workloads (for eg. Pytorch) on Ray with minimal effort by tapping into integrations. Native Ray libraries, such as Ray Tune and Ray Serve, lower the effort to scale the most compute-intensive machine learning workloads, such as hyperparameter tuning, training deep learning models, and reinforcement learning. For example, get started with distributed hyperparameter tuning in just 10 lines of code. Creating distributed apps is hard. Ray handles all aspects of distributed execution.
    Starting Price: Free
  • 4
    Dagster

    Dagster

    Dagster Labs

    Dagster is a next-generation orchestration platform for the development, production, and observation of data assets. Unlike other data orchestration solutions, Dagster provides you with an end-to-end development lifecycle. Dagster gives you control over your disparate data tools and empowers you to build, test, deploy, run, and iterate on your data pipelines. It makes you and your data teams more productive, your operations more robust, and puts you in complete control of your data processes as you scale. Dagster brings a declarative approach to the engineering of data pipelines. Your team defines the data assets required, quickly assessing their status and resolving any discrepancies. An assets-based model is clearer than a tasks-based one and becomes a unifying abstraction across the whole workflow.
    Starting Price: $0
  • 5
    Huawei Cloud ModelArts
    ​ModelArts is a comprehensive AI development platform provided by Huawei Cloud, designed to streamline the entire AI workflow for developers and data scientists. It offers a full-lifecycle toolchain that includes data preprocessing, semi-automated data labeling, distributed training, automated model building, and flexible deployment options across cloud, edge, and on-premises environments. It supports popular open source AI frameworks such as TensorFlow, PyTorch, and MindSpore, and allows for the integration of custom algorithms tailored to specific needs. ModelArts features an end-to-end development pipeline that enhances collaboration across DataOps, MLOps, and DevOps, boosting development efficiency by up to 50%. It provides cost-effective AI computing resources with diverse specifications, enabling large-scale distributed training and inference acceleration.
  • 6
    SwarmOne

    SwarmOne

    SwarmOne

    SwarmOne is an autonomous infrastructure platform designed to streamline the entire AI lifecycle, from training to deployment, by automating and optimizing AI workloads across any environment. With just two lines of code and a one-click hardware installation, users can initiate instant AI training, evaluation, and deployment. It supports both code and no-code workflows, enabling seamless integration with any framework, IDE, or operating system, and is compatible with any GPU brand, quantity, or generation. SwarmOne's self-setting architecture autonomously manages resource allocation, workload orchestration, and infrastructure swarming, eliminating the need for Docker, MLOps, or DevOps. Its cognitive infrastructure layer and burst-to-cloud engine ensure optimal performance, whether on-premises or in the cloud. By automating tasks that typically hinder AI model development, SwarmOne allows data scientists to focus exclusively on scientific work, maximizing GPU utilization.
  • Previous
  • You're on page 1
  • Next