编译如下代码时,出现value toDF is not a member of org.apache.Spark.rdd.RDD[People] 错误
val rdd : RDD[People]= sparkSession.sparkContext.textFile(hdfsFile,2).map(line => line.split(",")).map(arr => People(arr(0),arr(1).trim.toInt))
rdd.toDF
参考http://stackoverflow.com/questions/33704831/value-todf-is-not-a-member-of-org-apache-spark-rdd-rdd,针对此错误有人提出需要做到以下两点
1. import sqlContext.implicits._ 语句需要放在获取sqlContext对象的语句之后
2. case class People(name : String, age : Int) 的定义需要放在方法的作用域之外(即Java的成员变量位置)
实际上只需要做到第二点即可解决错误,如下:
import org.apache.spark.{SparkContext, SparkConf} /** * Created by ESRI on 2017/6/14. */ object sqltest2 { case class Person(name: String, age: Int) def main(args: Array[String]) { println("I Love You Scala") System.setProperty("hadoop.home.dir", "E:\\bigdataTools\\hadoop\\hadoop-2.6.0\\hadoop-2.6.0") val conf = new SparkConf().setMaster("local").setAppName("wordCount") val sc = new SparkContext(conf) val sqlContext = new org.apache.spark.sql.SQLContext(sc) import sqlContext.implicits._ // Define the schema using a case class. // Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit, // you can use custom classes that implement the Product interface. // Create an RDD of Person objects and register it as a table. val people = sc.textFile("E:\\testData\\spark\\spark1.6\\people.txt").map(_.split(",")).map(p => Person(p(0).trim.toString, p(1).trim.toInt)).toDF() people.registerTempTable("people") // SQL statements can be run by using the sql methods provided by sqlContext. val teenagers = sqlContext.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19") // The results of SQL queries are DataFrames and support all the normal RDD operations. // The columns of a row in the result can be accessed by field index: teenagers.map(t => "Name: " + t(0)).collect().foreach(println) // or by field name: teenagers.map(t => "Name: " + t.getAs[String]("name")).collect().foreach(println) // row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T] //teenagers.map(_.getValuesMap[Any](List("name", "age"))).collect().foreach(println) } }