欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/136006572
VQ-VAE-2: Generating Diverse High-Fidelity Images with VQ-VAE-2,NIPS 2019
- 使用 VQ-VAE-2 生成多样化的高保真度图像
源码(PyTorch):https://github.com/rosinality/vq-vae-2-pytorch/blob/master/vqvae.py
VQ-VAE-2,即向量量化变分自编码器(VQ-VAE) 的第2版。VQ-VAE 利用离散的隐变量,来近似连续的潜在分布,有效地压缩图像信息,结合自回归的先验来重建或生成图像。这