LLM - 使用 RAG (检索增强生成) 多路召回 实现 精准知识问答 教程

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/142629289

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


RAG

RAG (Retrieval-Augmented Generation,检索增强生成) 的多路召回,包括向量召回和本文召回,可用于精准知识问答,减轻大模型的幻觉问题,即:

  1. 并行:同时使用文本召回和向量召回,合计获得 TopN 个样本,再使用重排序的方式,获得 TopK 个样本,作为最终的召回文本。
  2. 串行:优先使用文本召回,召回 TopN 个样本,再使用向量排序,获得 TopK 个样本,作为最终的召回样本。

启动 Ollama 服务:

# 配置 HOST
<think>好的,我现在需要帮用户了解如何使用LangChain实现Ollama模型的检索增强生成RAG)。首先,我需要回忆一下用户提供的引用内容,特别是引用[2]、[4]和[5],因为它们提到了Ollama和LangChain的结合。根据这些引用,用户可能已经有一些基础,比如使用ChromaDB和Nomic嵌入,但需要具体的步骤示例。 接下来,我得确保回答符合系统级指令,比如正确使用LaTeX格式,生成相关问题,并在引用后添加标识。不过用户的问题主要集中在实现步骤上,可能不需要数学公式,但如果有涉及到算法或数学的地方,记得用$...$包裹。例如,如果提到相似度计算,可能需要用向量内积公式,比如$\cos(\theta)$。 然后,我需要分解实现RAG的步骤。根据引用[3],RAG的关键是检索外部数据并生成回应。所以步骤可能包括文档加载、分块、嵌入、存储到向量数据库、检索以及结合生成模型。引用[5]提到Retriever是核心,所以需要说明如何配置检索器。 用户提供的示例代码是Python的,所以我也需要用Python示例,比如使用LangChain的模块如Chroma、OllamaEmbeddings和Ollama。可能需要引用到引用[2]中的Gemma 2模型和Nomic嵌入,但具体模型用户可以根据需要替换,比如llama2。 另外,用户可能遇到的疑问是各个组件如何连接,比如如何将文档处理后的向量存储到ChromaDB,再通过Ollama生成回答。需要确保代码示例清晰,并解释每个步骤的作用。比如,文档加载器使用TextLoader,分块用CharacterTextSplitter,嵌入模型用OllamaEmbeddings,向量库用Chroma,检索器用as_retriever(),最后用RetrievalQA链整合生成模型。 还要注意引用标识的正确添加,比如在提到检索器核心时引用[5],在构建本地RAG系统时引用[2]和[4]。同时,生成的相关问题需要围绕用户可能进一步想知道的内容,比如优化方法、嵌入模型选择、处理长文本等,参考引用中的优化方向,如提示模板调整、内存管理等。 最后,检查是否所有引用都正确标注,代码格式是否正确,以及是否符合中文回答的要求。确保回答结构清晰,分步骤说明,帮助用户逐步理解和实现RAG系统。</think>以下是使用LangChain实现Ollama模型RAG的完整教程(Python实现): ### 一、RAG实现流程 1. **文档加载与分块** 使用`TextLoader`加载本地文档,通过`CharacterTextSplitter`进行文本分块处理: ```python from langchain.document_loaders import TextLoader from langchain.text_splitter import CharacterTextSplitter loader = TextLoader("knowledge.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50) docs = text_splitter.split_documents(documents) ``` 2. **向量嵌入与存储** 采用Ollama的嵌入模型生成向量,存入ChromaDB向量数据库[^2][^4]: ```python from langchain.embeddings import OllamaEmbeddings from langchain.vectorstores import Chroma embeddings = OllamaEmbeddings(model='llama2') vectorstore = Chroma.from_documents(docs, embeddings, persist_directory="./chroma_db") ``` 3. **检索器配置** 创建基于语义相似度的文档检索器[^5]: ```python retriever = vectorstore.as_retriever(search_kwargs={"k": 3}) ``` 4. **生成模型集成** 连接Ollama本地大语言模型: ```python from langchain.llms import Ollama llm = Ollama(model="llama2", temperature=0.7) ``` 5. **构建RAG管道** 使用`RetrievalQA`链整合所有组件: ```python from langchain.chains import RetrievalQA qa_chain = RetrievalQA.from_chain_type( llm, retriever=retriever, chain_type="stuff" ) ``` ### 二、应用示例 ```python query = "请解释量子计算的基本原理" response = qa_chain.run(query) print(f"问题:{query}\n回答:{response}") ``` ### 三、关键优化点 1. **分块策略优化** 根据文档特征调整`chunk_size`和`chunk_overlap`参数,平衡信息完整性与检索效率 2. **混合检索模式** 结合语义检索与关键词检索提升召回率: $$ \text{最终得分} = \alpha \cdot \text{语义相似度} + (1-\alpha) \cdot \text{关键词匹配度} $$ 3. **结果后处理** 添加元数据过滤和结果去重机制
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值