【数学】整数个数(金牌导航 欧拉函数-1)

本文解析了如何使用欧拉函数和整除特性来计算1到n-1中不与n互质且不整除n的整数个数,通过实例10给出了解题步骤,并提供了C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整数个数

金牌导航 欧拉函数-1

题目大意

问1~n-1中满足x ∤ \nmid n且不与n互质的数有多少个

输入样例

10

输出样例

3

样例解释

3个数分别是4,6,8

数据范围

0 ⩽ n ⩽ 2 31 0\leqslant n\leqslant 2^{31} 0n231

解题思路

因为互质和整除的子集是独立的(1除外),所以求出这两个子集大小,然后用n减去即可

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int n, m, p, ans, ans1;
int main()
{
	scanf("%d", &n);
	m = ans = n;
	ans1 = 1;//1也和n互质,不重复计算
	for (int i = 2; i * i <= n; ++i)
	{
		p = 0;
		while(m % i == 0) m /= i, p++;
		if (p) ans = ans / i * (i - 1);//欧拉函数
		if (n % i == 0) ans1 += 2;//因子是成对的
		if (i * i == n) ans1--;//如果和自己成对,那么不重复计算
	}
	if (m > 1) ans = ans / m * (m - 1);
	printf("%d", n - ans - ans1);
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值