【数论】数表(P3312)

本文介绍了一道关于数论的算法题及其解题思路,通过数学转换简化了问题,并利用预处理和整除分块技巧实现了高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正题

P3312


题目大意

给出n,m,a,求 ∑ i = 1 n ∑ j = 1 m σ ( g c d ( i , j ) ) [ σ ( g c d ( i , j ) ) ≤ a ] \sum_{i=1}^n\sum_{j=1}^m\sigma(gcd(i,j))[\sigma(gcd(i,j))\leq a] i=1nj=1mσ(gcd(i,j))[σ(gcd(i,j))a]


解题思路

先不考虑a的条件限制
∑ i = 1 n ∑ j = 1 m σ ( g c d ( i , j ) ) \sum_{i=1}^n\sum_{j=1}^m\sigma(gcd(i,j)) i=1nj=1mσ(gcd(i,j))
∑ d = 1 n σ ( d ) ∑ i = 1 n / d ∑ j = 1 m / d ∑ c ∣ i , c ∣ j μ ( c ) \sum_{d=1}^n\sigma(d)\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}\sum_{c|i,c|j}\mu(c) d=1nσ(d)i=1n/dj=1m/dci,cjμ(c)
∑ d = 1 n σ ( d ) ∑ c ∣ i , c ∣ j μ ( c ) ⌊ n c d ⌋ ⌊ m c d ⌋ \sum_{d=1}^n\sigma(d)\sum_{c|i,c|j}\mu(c)\left\lfloor\frac{n}{cd}\right\rfloor\left\lfloor\frac{m}{cd}\right\rfloor d=1nσ(d)ci,cjμ(c)cdncdm

设k=cd,枚举k

∑ k = 1 n ⌊ n k ⌋ ⌊ m k ⌋ ∑ d ∣ k σ ( d ) μ ( k d ) \sum_{k=1}^n\left\lfloor\frac{n}{k}\right\rfloor\left\lfloor\frac{m}{k}\right\rfloor\sum_{d|k}\sigma(d)\mu(\frac{k}{d}) k=1nknkmdkσ(d)μ(dk)

对于后面一部分可以预处理出来

然后整除分块即可

考虑a的限制条件,可以离线处理

先对a进行排序,只计算满足条件的d,对于一段区间的和可以用树状数组

时间复杂度 O ( T n   l o g   n ) O(T\sqrt{n}\ log\ n) O(Tn  log n)


code

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define N 100100
#define mod 2147483648
#define mp make_pair
#define fs first
#define sn second
using namespace std;
ll t,w,n,m,ans,now,g[N],f[N],p[N],c[N],qs[N],mu[N],prime[N];
pair<ll,ll>a[N];
struct node
{
	ll n,m,a,v;
}q[N];
bool cmp(node a,node b)
{
	return a.a<b.a;
}
void work()
{
	mu[1]=f[1]=1;
	for(ll i=2;i<=1e5;++i){
		if(!p[i]){
			prime[++w]=i;
			mu[i]=-1;
			f[i]=i+1;
			g[i]=i+1;
		}
		for(ll j=1;j<=w&&i*prime[j]<=1e5;++j){
			p[i*prime[j]]=1;
			if(i%prime[j]==0){
				g[i*prime[j]]=g[i]*prime[j]+1;
				f[i*prime[j]]=f[i]/g[i]*g[i*prime[j]];
			}
			else{
				mu[i*prime[j]]=-mu[i];
				g[i*prime[j]]=prime[j]+1;
				f[i*prime[j]]=f[i]*g[i*prime[j]];
			}
		}
	}
	for(ll i=1;i<=1e5;++i)
		a[i]=mp(f[i],i);
	sort(a+1,a+1+100000);
	return;
}
void add(ll x,ll y)
{
	for(;x<=1e5;x+=x&-x)
		(c[x]+=y)%=mod;
	return;
}
ll ask(ll x)
{
	ll sum=0;
	for(;x;x-=x&-x)
		(sum+=c[x])%=mod;
	return sum;
}
int main()
{
	scanf("%lld",&t);
	for(ll i=1;i<=t;++i){
		scanf("%lld%lld%lld",&q[i].n,&q[i].m,&q[i].a);
		q[i].v=i;
	}
	sort(q+1,q+1+t,cmp);
	work();
	now=1;
	for(ll i=1;i<=t;++i){
		while(now<=1e5&&a[now].fs<=q[i].a){
			for(ll j=1;a[now].sn*j<=1e5;++j)
				add(a[now].sn*j,(a[now].fs*mu[j]%mod+mod)%mod);
			now++;
		}
		ans=0;
		n=q[i].n;
		m=q[i].m;
		for(ll l=1,r=0;l<=min(n,m);l=r+1){
			r=min(n/(n/l),m/(m/l));
			(ans+=(ask(r)-ask(l-1)+mod)%mod*(n/l)%mod*(m/l)%mod)%=mod;
		}
		qs[q[i].v]=ans;
	}
	for(int i=1;i<=t;++i)
		printf("%lld\n",qs[i]);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值