计蒜客:A1629 代码填空:快速幂(java实现)

本文介绍了一种在O(log(n))时间内计算x^y mod p的快速幂取模算法,并提供了一个Java实现示例。该算法通过递归将指数分解,利用平方和取模操作减少计算复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

一个数的整数次幂,是我们在计算中经常用到的,但是怎么可以在 O(log(n)) 的时间内算出结果呢?

代码框中的代码是一种实现,请分析并填写缺失的代码,求 x^y mod p 的结果。

代码

import java.util.*;
public class Main {
    public static int pw(int x, int y, int p) {
        if (y == 0) {
            return 1;
        }
        int res = pw(x*x%p,y/2,p);
        if ((y & 1) != 0) {
            res = res * x % p;
        }
        return res;
    }
    public static void main(String[] args) {
        Scanner cin = new Scanner(System.in);
        int x = cin.nextInt();
        int y = cin.nextInt();
        int p = cin.nextInt();
        System.out.println(pw(x, y, p));
    }
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

日月星辰TEL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值