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ABSTRACT

Any sufficiently complex system acts as a black box when
it becomes easier to experiment with than to understand.
Hence, black-box optimization has become increasingly im-
portant as systems have become more complex. In this paper
we describe Google Vizier, a Google-internal service for per-
forming black-box optimization that has become the de facto
parameter tuning engine at Google. Google Vizier is used
to optimize many of our machine learning models and other
systems, and also provides core capabilities to Google’s Cloud
Machine Learning HyperTune subsystem. We discuss our re-
quirements, infrastructure design, underlying algorithms, and
advanced features such as transfer learning and automated
early stopping that the service provides.
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1 INTRODUCTION

Black–box optimization is the task of optimizing an objective
function 𝑓 : 𝑋 → R with a limited budget for evaluations.
The adjective “black–box” means that while we can eval-
uate 𝑓(𝑥) for any 𝑥 ∈ 𝑋, we have no access to any other
information about 𝑓 , such as gradients or the Hessian. When
function evaluations are expensive, it makes sense to carefully
and adaptively select values to evaluate; the overall goal is
for the system to generate a sequence of 𝑥𝑡 that approaches
the global optimum as rapidly as possible.

Black box optimization algorithms can be used to find the
best operating parameters for any system whose performance
can be measured as a function of adjustable parameters. It
has many important applications, such as automated tuning
of the hyperparameters of machine learning systems (e.g.,
learning rates, or the number of hidden layers in a deep neural
network), optimization of the user interfaces of web services
(e.g. optimizing colors and fonts to maximize reading speed),
and optimization of physical systems (e.g., optimizing airfoils
in simulation).
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In this paper we discuss a state-of-the-art system for black–
box optimization developed within Google, called Google
Vizier, named after a high official who offers advice to rulers.
It is a service for black-box optimization that supports several
advanced algorithms. The system has a convenient Remote
Procedure Call (RPC) interface, along with a dashboard and
analysis tools. Google Vizier is a research project, parts of
which supply core capabilities to our Cloud Machine Learning
HyperTune1 subsystem. We discuss the architecture of the
system, design choices, and some of the algorithms used.

1.1 Related Work

Black–box optimization makes minimal assumptions about
the problem under consideration, and thus is broadly appli-
cable across many domains and has been studied in multiple
scholarly fields under names including Bayesian Optimiza-
tion [2, 25, 26], Derivative–free optimization [7, 24], Sequen-
tial Experimental Design [5], and assorted variants of the
multiarmed bandit problem [13, 20, 29].

Several classes of algorithms have been proposed for the
problem. The simplest of these are non-adaptive procedures
such as Random Search, which selects 𝑥𝑡 uniformly at ran-
dom from 𝑋 at each time step 𝑡 independent of the previous
points selected, {𝑥𝜏 : 1 ≤ 𝜏 < 𝑡}, and Grid Search, which
selects along a grid (i.e., the Cartesian product of finite sets
of feasible values for each parameter). Classic algorithms
such as SimulatedAnnealing and assorted genetic algo-
rithms have also been investigated, e.g., Covariance Matrix
Adaptation [16].

Another class of algorithms performs a local search by
selecting points that maintain a search pattern, such as a sim-
plex in the case of the classic Nelder–Mead algorithm [22].
More modern variants of these algorithms maintain simple
models of the objective 𝑓 within a subset of the feasible
regions (called the trust region), and select a point 𝑥𝑡 to
improve the model within the trust region [7].

More recently, some researchers have combined powerful
techniques for modeling the objective 𝑓 over the entire feasible
region, using ideas developed for multiarmed bandit problems
for managing explore / exploit trade-offs. These approaches
are fundamentally Bayesian in nature, hence this literature
goes under the name Bayesian Optimization. Typically, the
model for 𝑓 is a Gaussian process (as in [26, 29]), a deep
neural network (as in [27, 31]), or a regression forest (as
in [2, 19]).

Many of these algorithms have open-source implemen-
tations available. Within the machine learning community,
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examples include, e.g., HyperOpt2, MOE3, Spearmint4, and
AutoWeka5, among many others. In contrast to such software
packages, which require practitioners to set them up and run
them locally, we opted to develop a managed service for
black–box optimization, which is more convenient for users
but involves additional design considerations.

1.2 Definitions

Throughout the paper, we use to the following terms to
describe the semantics of the system:

A Trial is a list of parameter values, 𝑥, that will lead to a
single evaluation of 𝑓(𝑥). A trial can be “Completed”, which
means that it has been evaluated and the objective value
𝑓(𝑥) has been assigned to it, otherwise it is “Pending”.

A Study represents a single optimization run over a feasible
space. Each Study contains a configuration describing the
feasible space, as well as a set of Trials. It is assumed that
𝑓(𝑥) does not change in the course of a Study.

A Worker refers to a process responsible for evaluating a
Pending Trial and calculating its objective value.

2 SYSTEM OVERVIEW

This section explores the design considerations involved in
implementing black-box optimization as a service.

2.1 Design Goals and Constraints

Vizier’s design satisfies the following desiderata:

∙ Ease of use. Minimal user configuration and setup.
∙ Hosts state-of-the-art black-box optimization algorithms.
∙ High availability
∙ Scalable to millions of trials per study, thousands of
parallel trial evaluations per study, and billions of stud-
ies.
∙ Easy to experiment with new algorithms.
∙ Easy to change out algorithms deployed in production.

For ease of use, we implemented Vizier as a managed ser-
vice that stores the state of each optimization. This approach
drastically reduces the effort a new user needs to get up and
running; and a managed service with a well-documented and
stable RPC API allows us to upgrade the service without user
effort. We provide a default configuration for our managed
service that is good enough to ensure that most users need
never concern themselves with the underlying optimization
algorithms.

The default option allows the service to dynamically select
a recommended black–box algorithm along with low–level
settings based on the study configuration. We choose to
make our algorithms stateless, so that we can seamlessly
switch algorithms during a study, dynamically choosing the
algorithm that is likely to perform better for a particular trial
of a given study. For example, Gaussian Process Bandits [26,
29] provide excellent result quality, but naive implementations

2https://github.com/jaberg/hyperopt
3https://github.com/Yelp/MOE
4https://github.com/HIPS/Spearmint
5https://github.com/automl/autoweka

scale as 𝑂(𝑛3) with the number of training points. Thus, once
we’ve collected a large number of completed Trials, we may
want to switch to using a more scalable algorithm.

At the same time, we want to allow ourselves (and advanced
users) the freedom to experiment with new algorithms or
special-case modifications of the supported algorithms in a
manner that is safe, easy, and fast. Hence, we’ve built Google
Vizier as a modular system consisting of four cooperating
processes (see Figure 1) that update the state of Studies in the
central database. The processes themselves are modular with
several clean abstraction layers that allow us to experiment
with and apply different algorithms easily.

Finally we want to allow multiple trials to be evaluated
in parallel, and allow for the possibility that evaluating the
objective function for each trial could itself be a distributed
process. To this end we define Workers, responsible for evalu-
ating suggestions, and identify each worked by a persistent
name (a worker handle) that persists across process preemp-
tions or crashes.

2.2 Basic User Workflow

To use Vizier, a developer may use one of our client libraries
(currently implemented in C++, Python, Golang), which will
generate service requests encoded as protocol buffers [15].
The basic workflow is extremely simple. Users specify a study
configuration which includes:

∙ Identifying characteristics of the study (e.g. name,
owner, permissions).
∙ The set of parameters along with feasible sets for each
(c.f., Section 2.3.1 for details); Vizier does constrained
optimization over the feasible set.

Given this configuration, basic use of the service (with each
trial being evaluated by a single process) can be implemented
as follows:

# Register this client with the Study, creating it if
# necessary.
client.LoadStudy(study config, worker handle)
while (not client.StudyIsDone()):
# Obtain a trial to evaluate.
trial = client.GetSuggestion()
# Evaluate the objective function at the trial parameters.
metrics = RunTrial(trial)
# Report back the results.
client.CompleteTrial(trial, metrics)

Here RunTrial is the problem–specific evaluation of the
objective function 𝑓 . Multiple named metrics may be reported
back to Vizier, however one must be distinguished as the
objective value 𝑓(𝑥) for trial 𝑥. Note that multiple processes
working on a study should share the same worker handle if
and only if they are collaboratively evaluating the same trial.
All processes registered with a given study with the same
worker handle are guaranteed to receive the same trial when
upon request, which enables distributed trial evaluation.

https://github.com/HIPS/Spearmint
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Figure 1: Architecture of Vizier service: Main compo-

nents are (1) Dangling work finder (restarts work lost
to preemptions) (2) Persistent Database holding the cur-

rent state of all Studies (3) Suggestion Service (creates

new Trials), (4) Early Stopping Service (helps terminate
a Trial early) (5) Vizier API (JSON, validation, multi-

plexing) (6) Evaluation workers (provided and owned by

the user).

2.3 Interfaces

2.3.1 Configuring a Study. To configure a study, the user
provides a study name, owner, optional access permissions, an
optimization goal from {MAXIMIZE, MINIMIZE}, and specifies
the feasible region 𝑋 via a set of ParameterConfigs, each of
which declares a parameter name along with its values. We
support the following parameter types:

∙ DOUBLE: The feasible region is a closed interval [𝑎, 𝑏] for
some real values 𝑎 ≤ 𝑏.
∙ INTEGER: The feasible region has the form [𝑎, 𝑏] ∩ Z for
some integers 𝑎 ≤ 𝑏.
∙ DISCRETE: The feasible region is an explicitly specified,
ordered set of real numbers.
∙ CATEGORICAL: The feasible region is an explicitly speci-
fied, unordered set of strings.

Users may also suggest recommended scaling, e.g., loga-
rithmic scaling for parameters for which the objective may
depend only on the order of magnitude of a parameter value.

2.3.2 API Definition. Workers and end users can make
calls to the Vizier Service using either a REST API or using
Google’s internal RPC protocol [15]. The most important
service calls are:

∙ CreateStudy: Given a Study configuration, this creates
an optimization Study and returns a globally unique
identifier (“guid”) which is then used for all future
service calls. If a Study with a matching name exists,
the guid for that Study is returned. This allows parallel
workers to call this method and all register with the
same Study.
∙ SuggestTrials: This method takes a “worker handle”
as input, and immediately returns a globally unique
handle for a “long-running operation” that represents

the work of generating Trial suggestions. The user
can then poll the API periodically to check the status
of the operation. Once the operation is completed, it
will contain the suggested Trials. This design ensures
that all service calls are made with low latency, while
allowing for the fact that the generation of Trials can
take longer.
∙ AddMeasurementToTrial: This method allows clients to
provide intermediate metrics during the evaluation of
a Trial. These metrics are then used by the Automated
Stopping rules to determine which Trials should be
stopped early.
∙ CompleteTrial: This method changes a Trial’s status
to “Completed”, and provides a final objective value
that is then used to inform the suggestions provided
by future calls to SuggestTrials.
∙ ShouldTrialStop: This method returns a globally unique
handle for a long-running operation that represents the
work of determining whether a Pending Trial should
be stopped.

2.4 Infrastructure

2.4.1 Parallel Processing of Suggestion Work. As the de
facto parameter tuning engine of Google, Vizier is constantly
working on generating suggestions for a large number of
Studies concurrently. As such, a single machine would be in-
sufficient for handling the workload. Our Suggestion Service is
therefore partitioned across several Google datacenters, with
a number of machines being used in each one. Each instance
of the Suggestion Service potentially can generate sugges-
tions for several Studies in parallel, giving us a massively
scalable suggestion infrastructure. Google’s load balancing
infrastructure is then used to allow clients to make calls to a
unified endpoint, without needing to know which instance is
doing the work.

When a request is received by a Suggestion Service instance
to generate suggestions, the instance first places a distributed
lock on the Study. This lock is acquired for a fixed period
of time, and is periodically extended by a separate thread
running on the instance. In other words, the lock will be held
until either the instance fails, or it decides it’s done working
on the Study. If the instance fails (due to e.g. hardware
failure, job preemption, etc), the lock soon expires, making
it eligible to be picked up by a separate process (called the
“DanglingWorkFinder”) which then reassigns the Study to a
different Suggestion Service instance.

One consideration in maintaining a production system is
that bugs are inevitably introduced as our code matures.
Occasionally, a new algorithmic change, however well tested,
will lead to instances of the Suggestion Service failing for
particular Studies. If a Study is picked up by the Dangling-
WorkFinder too many times, it will temporarily halt the
Study and alert us. This prevents subtle bugs that only affect
a few Studies from causing crash loops that affect the overall
stability of the system.
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Figure 2: Architecture of Playground mode: Main com-
ponents are (1) The Vizier API takes service requests.

(2) The Custom Policy implements the Abstract Policy

and generates suggested Trials. (3) The Playground Bi-
nary drives the custom policy based on demand reported

by the Vizier API. (4) The Evaluation Workers behave
as normal, i.e., they request and evaluate Trials.

2.5 The Algorithm Playground

Vizier’s algorithm playground provides a mechanism for ad-
vanced users to easily, quickly, and safely replace Vizier’s
core optimization algorithms with arbitrary algorithms.

The playground serves a dual purpose; it allows rapid
prototyping of new algorithms, and it allows power-users to
easily customize Vizier with advanced or exotic capabilities
that are particular to their use-case. In all cases, users of
the playground benefit from all of Vizier’s infrastructure
aside from the core algorithms, such as access to a persistent
database of Trials, the dashboard, and visualizations.

At the core of the playground is the ability to inject Trials
into a Study. Vizier allows the user or other authorized pro-
cesses to request one or more particular Trials be evaluated.
In Playground mode, Vizier does not suggest Trials for eval-
uation, but relies on an external binary to generate Trials,
which are then pushed to the service for later distribution to
the workers.

More specifically, the architecture of the Playground in-
volves the following key components: (1) Abstract Policy (2)
Playground Binary, (3) Vizier Service and (4) Evaluation
Workers. See Figure 2 for an illustration.

The Abstract Policy contains two abstract methods:

(1) GetNewSuggestions(trials, num suggestions)

(2) GetEarlyStoppingTrials(trials)

which should be implemented by the user’s custom policy.
Both these methods are passed the full state of all Trials in the
Study, so stateless algorithms are supported but not required.
GetNewSuggestions is expected to generate num suggestions

new trials, while the GetEarlyStoppingTrials method is ex-
pected to return a list of Pending Trials that should be
stopped early. The custom policy is registered with the Play-
ground Binary which periodically polls the Vizier Service.
The Evaluation Workers maintain the service abstraction
and are unaware of the existence of the Playground.

Figure 3: A section of the dashboard for tracking the

progress of Trials and the corresponding objective func-
tion values. Note also, the presence of actions buttons

such as Get Suggestions for manually requesting sugges-

tions.

2.6 Benchmarking Suite

Vizier has an integrated framework that allows us to effi-
ciently benchmark our algorithms on a variety of objective
functions. Many of the objective functions come from the
Black-Box Optimization Benchmarking Workshop [10], but
the framework allows for any function to be modeled by
implementing an abstract Experimenter class, which has a
virtual method responsible for calculating the objective value
for a given Trial, and a second virtual method that returns
the optimal solution for that benchmark.

Users configure a set of benchmark runs by providing a set
of algorithm configurations and a set of objective functions.
The benchmarking suite will optimize each function with each
algorithm 𝑘 times (where 𝑘 is configurable), producing a series
of performance-over-time metrics which are then formatted
after execution. The individual runs are distributed over
multiple threads and multiple machines, so it is easy to have
thousands of benchmark runs executed in parallel.

2.7 Dashboard and Visualizations

Vizier has a web dashboard which is used for both monitoring
and changing the state of Vizier studies. The dashboard is
fully featured and implements the full functionality of the
Vizier API. The dashboard is commonly used for: (1) Tracking
the progress of a study. (2) Interactive visualizations. (3)
Creating, updating and deleting a study. (4) Requesting new
suggestions, early stopping, activating/deactivating a study.
See Figure 3 for a section of the dashboard. In addition to
monitoring and visualizations, the dashboard contains action
buttons such as Get Suggestions.

The dashboard uses a translation layer which converts
between JSON and protocol buffers [15] when talking with
backend servers. The dashboard is built with Polymer [14]
an open source web framework supported by Google and
uses material design principles. It contains interactive vi-
sualizations for analyzing the parameters in your study. In
particular, we use the parallel coordinates visualization [18]
which has the benefit of scaling to high dimensional spaces



Figure 4: The Parallel Coordinates visualization [18] is

used for examining results from different Vizier runs. It
has the benefit of scaling to high dimensional spaces (∼15

dimensions) and works with both numerical and categor-
ical parameters. Additionally, it is interactive and allows

various modes of slicing and dicing data.

(∼15 dimensions) and works with both numerical and categor-
ical parameters. See Figure 4 for an example. Each vertical
axis is a dimension corresponding to a parameter, whereas
each horizontal line is an individual trial. The point at which
the horizontal line intersects the vertical axis gives the value
of the parameter in that dimension. This can be used for
examining how the dimensions co-vary with each other and
also against the objective function value (left most axis). The
visualizations are built using d3.js [4].

3 THE VIZIER ALGORITHMS

Vizier’s modular design allows us to easily support multiple
algorithms. For studies with under a thousand trials, Vizier
defaults to using Batched Gaussian Process Bandits [8]. We
use a Matérn kernel with automatic relevance determination
(see e.g. section 5.1 of Rasmussen and Williams [23] for a
discussion) and the expected improvement acquisition func-
tion [21]. We search for and find local maxima of the acquisi-
tion function with a proprietary gradient-free hill climbing
algorithm, with random starting points.

We implement discrete parameters by embedding them in
R. Categorical parameters with 𝑘 feasible values are repre-
sented via one-hot encoding, i.e., embedded in [0, 1]𝑘. In both
cases, the Gaussian Process regressor gives us a continuous
and differentiable function upon which we can walk uphill,
then when the walk has converged, round to the nearest
feasible point.

While some authors recommend using Bayesian deep learn-
ing models in lieu of Gaussian processes for scalability [27, 31],
in our experience they are too sensitive to their own hyperpa-
rameters and do not reliably perform well. Other researchers
have recognized this problem as well, and are working to
address it [28].

For studies with tens of thousands of trials or more, other al-
gorithms may be used. ThoughRandomSearch andGridSearch
are supported as first–class choices and may be used in this
regime, and many other published algorithms are supported

through the algorithm playground, we currently recommend
a proprietary local–search algorithm under these conditions.

For all of these algorithms we support data normalization,
which maps numeric parameter values into [0, 1] and objec-
tive values onto [−0.5, 0.5]. Depending on the problem, a
one-to-one nonlinear mapping may be used for some of the
parameters, and is typically used for the objective. Data nor-
malization is handled before trials are presented to the trial
suggestion algorithms, and its suggestions are transparently
mapped back to the user-specified scaling.

3.1 Automated Early Stopping

In some important applications of black–box optimization,
information related to the performance of a trial may become
available during trial evaluation. Perhaps the best example
of such a performance curve occurs when tuning machine
learning hyperparameters for models trained progressively
(e.g., via some version of stochastic gradient descent). In this
case, the model typically becomes more accurate as it trains
on more data, and the accuracy of the model is available at the
end of each training epoch. Using these accuracy vs. training
step curves, it is often possible to determine that a trial’s
parameter settings are unpromising well before evaluation is
finished. In this case we can terminate trial evaluation early,
freeing those evaluation resources for more promising trial
parameters. When done algorithmically, this is referred to as
automated early stopping.

Vizier supports automated early stopping via an API call to
a
ShouldTrialStop method. Analogously to the Suggestion Ser-
vice, there is an Automated Stopping Service that accepts
requests from the Vizier API to analyze a study and de-
termine the set of trials that should be stopped, according
to the configured early stopping algorithm. As with sugges-
tion algorithms, several automated early stopping algorithms
are supported, and rapid prototyping can be done via the
algorithm playground.

3.2 Automated Stopping Algorithms

Vizier supports the following automated stopping algorithms.
These are meant to work in a stateless fashion i.e. they are
given the full state of all trials in the Vizier study when
determining which trials should stop.

3.2.1 Performance Curve Stopping Rule. This stopping rule
performs regression on the performance curves to make a
prediction of the final objective value of a Trial given a set of
Trials that are already Completed, and a partial performance
curve (i.e., a set of measurements taken during Trial evalua-
tion). Given this prediction, if the probability of exceeding
the optimal value found thus far is sufficiently low, early
stopping is requested for the Trial.

While prior work on automated early stopping used Bayesian
parametric regression [9, 30], we opted for a Bayesian non-
parametric regression, specifically a Gaussian process model
with a carefully designed kernel that measures similarity be-
tween performance curves. Our motivation in this was to



be robust to many kinds of performance curves, including
those coming from applications other than tuning machine
learning hyperparameters in which the performance curves
may have very different semantics. Notably, this stopping
rule still works well even when the performance curve is not
measuring the same quantity as the objective value, but is
merely predictive of it.

3.2.2 Median Stopping Rule. The median stopping rule
stops a pending trial 𝑥𝑡 at step 𝑠 if the trial’s best objective
value by step 𝑠 is strictly worse than the median value of the
running averages 𝑜𝜏1:𝑠 of all completed trials’ objectives 𝑥𝜏

reported up to step 𝑠. Here, we calculate the running average
of a trial 𝑥𝜏 up to step 𝑠 as 𝑜𝜏1:𝑠 = 1

𝑠
Σ𝑠

𝑖=1𝑜
𝜏
𝑖 , where 𝑜𝜏𝑖 is

the objective value of 𝑥𝜏 at step 𝑖. As with the performance
curve stopping rule, the median stopping rule does not depend
on a parametric model, and is applicable to a wide range
of performance curves. In fact, the median stopping rule
is model–free, and is more reminiscent of a bandit-based
approach such as HyperBand [20].

3.3 Transfer learning

When doing black-box optimization, users often run studies
that are similar to studies they have run before, and we can
use this fact to minimize repeated work. Vizier supports a
form of Transfer Learning which leverages data from prior
studies to guide and accelerate the current study. For instance,
one might tune the learning rate and regularization of a
machine learning system, then use that Study as a prior to
tune the same ML system on a different data set.

Vizier’s current approach to transfer learning is relatively
simple, yet robust to changes in objective across studies. We
designed our transfer learning approach with these goals in
mind:

(1) Scale well to situations where there are many prior
studies.

(2) Accelerate studies (i.e., achieve better results with
fewer trials) when the priors are good, particularly in
cases where the location of the optimum, 𝑥*, doesn’t
change much.

(3) Be robust against poorly chosen prior studies (i.e., a
bad prior should give only a modest deceleration).

(4) Share information even when there is no formal rela-
tionship between the prior and current Studies.

In previous work on transfer learning in the context of
hyperparameter optimization, Bardenet et al. [1] discuss the
difficulty in transferring knowledge across different datasets
especially when the observed metrics and the sampling of
the datasets are different. They use a ranking approach for
constructing a surrogate model for the response surface. This
approach suffers from the computational overhead of running
a ranking algorithm. Yogatama and Mann [32] propose a
more efficient approach, which scales as Θ(𝑘𝑛 + 𝑛3) for 𝑘
studies of 𝑛 trials each, where the cubic term comes from
using a Gaussian process in their acquisition function.

Vizier typically uses Gaussian Process regressors, so one
natural approach to implementing transfer learning might be

Figure 5: An illustration of our transfer learning
scheme, showing how 𝜇′

𝑖 is built from the residual
labels w.r.t. 𝜇𝑖−1 (shown in dotted red lines).

to build a larger Gaussian Process regressor that is trained
on both the prior(s) and the current Study. However that
approach fails to satisfy design goal 1: for 𝑘 studies with 𝑛
trials each it would require Ω(𝑘3𝑛3) time. Such an approach
also requires one to specify or learn kernel functions that
bridge between the prior(s) and current Study, violating
design goal 4.

Instead, our strategy is to build a stack of Gaussian Process
regressors, where each regressor is associated with a study,
and where each level is trained on the residuals relative to
the regressor below it. Our model is that the studies were
performed in a linear sequence, each study using the studies
before it as priors.

The bottom of the stack contains a regressor built using
data from the oldest study in the stack. The regressor above
it is associated with the 2nd oldest study, and regresses on
the residual of its objective relative to the predictions of the
regressor below it. Similarly, the regressor associated with
the 𝑖th study is built using the data from that study, and
regresses on the residual of the objective with respect to the
predictions of the regressor below it.

More formally, we have a sequence of studies {𝑆𝑖}𝑘𝑖=1 on un-

known objective functions {𝑓𝑖}𝑘𝑖=1, where the current study

is 𝑆𝑘, and we build two sequences of regressors {𝑅𝑖}𝑘𝑖=1

and {𝑅′
𝑖}

𝑘
𝑖=1 having posterior mean functions {𝜇𝑖}𝑘𝑖=1 and

{𝜇′
𝑖}

𝑘
𝑖=1 respectively, and posterior standard deviation func-

tions {𝜎𝑖}𝑘𝑖=1 and {𝜎′
𝑖}

𝑘
𝑖=1, respectively. Our final predictions

will be 𝜇𝑘 and 𝜎𝑘.
Let 𝐷𝑖 =

{︀
(𝑥𝑖

𝑡, 𝑦
𝑖
𝑡)
}︀
𝑡
be the dataset for study 𝑆𝑖. Let 𝑅

′
𝑖 be

a regressor trained using data
{︀
((𝑥𝑖

𝑡, 𝑦
𝑖
𝑡 − 𝜇𝑖−1(𝑥

𝑖
𝑡))

}︀
𝑡
which

computes 𝜇′
𝑖 and 𝜎′

𝑖. Then we define as our posterior means
at level 𝑖 as 𝜇𝑖(𝑥) := 𝜇′

𝑖(𝑥) + 𝜇𝑖−1(𝑥). We take our poste-
rior standard deviations at level 𝑖, 𝜎𝑖(𝑥), to be a weighted
geometric mean of 𝜎′

𝑖(𝑥) and 𝜎𝑖−1(𝑥), where the weights are
a function of the amount of data (i.e., completed trials) in
𝑆𝑖 and 𝑆𝑖−1. The exact weighting function depends on a
constant 𝛼 ≈ 1 sets the relative importance of old and new
standard deviations.

This approach has nice properties when the prior regressors
are densely supported (i.e. has many well-spaced data points),



but the top-level regressor has relatively little training data:
(1) fine structure in the priors carries through to 𝜇𝑘, even
if the top-level regressor gives a low-resolution model of the
objective function residual; (2) since the estimate for 𝜎′

𝑘 is
inaccurate, averaging it with 𝜎𝑘−1 can lead to an improved
estimate. Further, when the top-level regressor has dense
support, 𝛽 → 1 and the 𝜎𝑘 → 𝜎′

𝑘, as one might desire.
We provide details in the pseudocode in Algorithm 1, and

illustrate the regressors in Figure 5.

Algorithm 1 Transfer Learning Regressor

# This is a higher order function that returns a regressor
R(𝑥test);
# then R(𝑥test) can be evaluated to obtain (𝜇, 𝜎)
function GetRegressor(𝐷training, 𝑖)

If 𝑖 < 0: Return function that returns (0,1) for all inputs
# Recurse to get a Regressor (𝜇i−1(𝑥), 𝜎i−1(𝑥)) trained

on
# the data for all levels of the stack below this one.
𝑅prior ← GetRegressor(𝐷training, 𝑖− 1)
# Compute training residuals
𝐷residuals ← [(𝑥, 𝑦 −𝑅prior(𝑥)[0])for(𝑥, 𝑦) ∈ 𝐷i]
# Train a Gaussian Process (𝜇′

𝑖(𝑥), 𝜎
′
𝑖(𝑥)) on the resid-

uals.
𝐺𝑃residuals = TrainGP(𝐷residuals)
function StackedRegressor(𝑥test)

𝜇prior, 𝜎prior ← 𝑅prior(𝑥test)
𝜇top, 𝜎top ← 𝐺𝑃residuals(𝑥test)
𝜇← 𝜇top + 𝜇prior

𝛽 ← 𝛼|𝐷i|/(𝛼|𝐷i|+ |𝐷𝑖−1|)
𝜎 ← 𝜎𝛽

top𝜎
1−𝛽
prior

return 𝜇, 𝜎
end function
return StackedRegressor

end function

Algorithm 1 is then used in the Batched Gaussian Process
Bandits [8] algorithm. Algorithm 1 has the property that
for a sufficiently dense sampling of the feasible region in the
training data for the current study, the predictions converge
to those of a regressor trained only on the current study data.
This ensures a certain degree of robustness: badly chosen
priors will eventually be overwhelmed (design goal 3).

In production settings, transfer learning is often particu-
larly valuable when the number of trials per study is relatively
small, but there are many such studies. For example, certain
production machine learning systems may be very expensive
to train, limiting the number of trials that can be run for
hyperparameter tuning, yet are mission critical for a busi-
ness and are thus worked on year after year. Over time, the
total number of trials spanning several small hyperparameter
tuning runs can be quite informative. Our transfer learning
scheme is particularly well-suited to this case, as illustrated
in section 4.3.

4 RESULTS

4.1 Performance Evaluation

To evaluate the performance of Google Vizier we require func-
tions that can be used to benchmark the results. These are
pre-selected, easily calculated functions with known optimal
points that have proven challenging for black-box optimiza-
tion algorithms. We can measure the success of an optimizer
on a benchmark function 𝑓 by its final optimality gap. That
is, if 𝑥* minimizes 𝑓 , and �̂� is the best solution found by the
optimizer, then |𝑓(�̂�)− 𝑓(𝑥*)| measures the success of that
optimizer on that function. If, as is frequently the case, the
optimizer has a stochastic component, we then calculate the
average optimality gap by averaging over multiple runs of the
optimizer on the same benchmark function.

Comparing between benchmarks is a more difficult given
that the different benchmark functions have different ranges
and difficulties. For example, a good black-box optimizer
applied to the Rastrigin function might achieve an optimal-
ity gap of 160, while simple random sampling of the Beale
function can quickly achieve an optimality gap of 60 [10]. We
normalize for this by taking the ratio of the optimality gap
to the optimality gap of Random Search on the same func-
tion under the same conditions. Once normalized, we average
over the benchmarks to get a single value representing an
optimizer’s performance.

The benchmarks selected were primarily taken from the
Black-Box Optimization Benchmarking Workshop [10] (an
academic competition for black–box optimizers), and include
the Beale, Branin, Ellipsoidal, Rastrigin, Rosenbrock, Six
Hump Camel, Sphere, and Styblinski benchmark functions.

4.2 Empirical Results

In Figures 6 we look at result quality for four optimization
algorithms currently implemented in the Vizier framework: a
multiarmed bandit technique using a Gaussian process regres-
sor [29], the SMAC algorithm [19], the Covariance Matrix
Adaption Evolution Strategy (CMA-ES) [16], and a proba-
bilistic search method of our own. For a given dimension 𝑑,
we generalized each benchmark function into a 𝑑 dimensional
space, ran each optimizer on each benchmark 100 times,
and recorded the intermediate results (averaging these over
the multiple runs). Figure 6 shows their improvement over
Random Search; the horizontal axis represents the number
of trials have been evaluated, while the vertical axis indicates
each optimality gap as a fraction of the Random Search
optimality gap at the same point. The 2×Random Search
curve is the Random Search algorithm when it was al-
lowed to sample two points for each point the other algo-
rithms evaluated. While some authors have claimed that
2×Random Search is highly competitive with Bayesian Op-
timization methods [20], our data suggests this is only true
when the dimensionality of the problem is sufficiently high
(e.g., over 16).
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Figure 6: Ratio of the average optimality gap of each optimizer to that of Random Search at a given number of
samples. The 2×Random Search is a Random Search allowed to sample two points at every step (as opposed
to a single point for the other algorithms).
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Figure 7: Convergence of transfer learning in a 10
dimensional space. This shows a sequence of stud-
ies with progressive transfer learning for both GP
Bandit (blue diamonds) and Random Search (red
squares) optimizers. The X-axis shows the index of
the study, i.e. the number of times that transfer
learning has been applied; the Y-axis shows the log
of the best mean optimality gap seen in the study
(see Section 4.1). Each study contains six trials; for
the GP Bandit-based optimizer the previous studies
are used as priors for transfer learning. Note that the
GP bandits shows a consistent improvement in opti-
mality gap from study to study, thus demonstrating
an effective transfer of knowledge from the earlier
trials; Random Search does not do transfer learning.

4.3 Transfer Learning

We display the value of transfer learning in Figure 7 with a
series of short studies; each study is just six trials long. Even
so, one can see that transfer learning from one study to the
next leads to steady progress towards the optimum, as the
stack of regressors gradually builds up information about the
shape of the objective function.

This experiment is conducted in a 10 dimensional space,
using the 8 black-box functions described in section 4.1.
We run 30 studies (180 trials) and each study uses transfer
learning from all previous studies.

As one might hope, transfer learning causes the GP ban-
dit algorithm to show a strong systematic decrease in the
optimality gap from study to study, with its final average
optimality gap 37% the size of Random Search’s. As ex-
pected, Random Search shows no systematic improvement
in its optimality gap from study to study.

Note that a systematic improvement in the optimality gap
is a difficult task since each study gets a budget of only 6
trials whilst operating in a 10 dimensional space, and the GP
regressor is optimizing 8 internal hyperparameters for each
study. By any reasonable measure, a single study’s data is
insufficient for the regressor to learn much about the shape
of the objective function.

4.4 Automated Stopping

4.4.1 Performance Curve Stopping Rule. In our experi-
ments, we found that the use of the performance curve stop-
ping rule resulted in achieving optimality gaps comparable to
those achieved without the stopping rule, while using approx-
imately 50% fewer CPU-hours when tuning hyperparameter
for deep neural networks. Our result is in line with figures
reported by other researchers, while using a more flexible
non-parametric model (e.g., Domhan et al. [9] report reduc-
tions in the 40% to 60% range on three ML hyperparameter
tuning benchmarks).

4.4.2 Median Automated Stopping Rule. We evaluated the
Median Stopping Rule for several hyperparameter search
problems, including a state-of-the-art residual network archi-
tecture based on [17] for image classification on CIFAR10
with 16 tunable hyperparameters, and an LSTM architec-
ture [33] for language modeling on the Penn TreeBank data
set with 12 tunable hyperparameters. We observed that in all
cases the stopping rule consistently achieved a factor two to
three speedup over random search, while always finding the
best performing Trial. Li et al. [20] argued that “2X random



search”, i.e., random search at twice the speed, is competitive
with several state-of-the-art black-box optimization methods
on a broad range of benchmarks. The robustness of the stop-
ping rule was also evaluated by running repeated simulations
on a large set of completed random search trials under ran-
dom permutation, which showed that the algorithm almost
never decided to stop the ultimately-best-performing trial
early.

5 USE CASES

Vizier is used for a number of different application domains.

5.1 Hyperparameter tuning and
HyperTune

Vizier is used across Google to optimize hyperparameters
of machine learning models, both for research and produc-
tion models. Our implementation scales to service the entire
hyperparameter tuning workload across Alphabet, which is
extensive. As one (admittedly extreme) example, Collins et al.
[6] used Vizier to perform hyperparameter tuning studies that
collectively contained millions of trials for a research project
investigating the capacity of different recurrent neural net-
work architectures. In this context, a single trial involved
training a distinct machine learning model using different
hyperparameter values. That research project would not be
possible without effective black–box optimization. For other
research projects, automating the arduous and tedious task
of hyperparameter tuning accelerates their progress.

Perhaps even more importantly, Vizier has made notable
improvements to production models underlying many Google
products, resulting in measurably better user experiences for
over a billion people. External researchers and developers
can achieve the same benefits using Google Cloud Machine
Learning HyperTune subsystem, which benefits from our
experience and technology.

5.2 Automated A/B testing

In addition to tuning hyperparameters, Vizier has a number
of other uses. It is used for automated A/B testing of Google
web properties, for example tuning user–interface parameters
such as font and thumbnail sizes, color schema, and spacing,
or traffic-serving parameters such as the relative importance
of various signals in determining which items to show to a user.
An example of the latter would be “how should the search
results returned from Google Maps trade off search-relevance
for distance from the user?”

5.3 Delicious Chocolate Chip Cookies

Vizier is also used to solve complex black–box optimization
problems arising from physical design or logistical problems.
Here we present an example that highlights some additional
capabilities of the system: finding the most delicious chocolate
chip cookie recipe from a parameterized space of recipes.

Parameters included baking soda, brown sugar, white

sugar, butter, vanilla, egg, flour, chocolate, chip type, salt,
cayenne, orange extract, baking time, and baking temperature.

We provided recipes to contractors responsible for provid-
ing desserts for Google employees. The head chefs among
the contractors were given discretion to alter parameters if
(and only if) they strongly believed it to be necessary, but
would carefully note what alterations were made. The cookies
were baked, and distributed to the cafes for taste–testing.
Cafe goers tasted the cookies and provided feedback via a
survey. Survey results were aggregated and the results were
sent back to Vizier. The “machine learning cookies” were
provided about twice a week over several weeks.

The cookies improved significantly over time; later rounds
were extremely well-rated and, in the authors’ opinions, deli-
cious. However, we wish to highlight the following capabilities
of Vizier the cookie design experiment exercised:

∙ Infeasible trials: In real applications, some trials may
be infeasible, meaning they cannot be evaluated for
reasons that are intrinsic to the parameter settings.
Very high learning rates may cause training to diverge,
leading to garbage models. In this example: very low
levels of butter may make your cookie dough impossibly
crumbly and incohesive.
∙ Manual overrides of suggested trials: Sometimes you
cannot evaluate the suggested trial or else mistakenly
evaluate a different trial than the one asked for. For
example, when baking you might be running low on
an ingredient and have to settle for less than the rec-
ommended amount.
∙ Transfer learning: Before starting to bake at large scale,
we baked some recipes in a smaller scale run-through.
This provided useful data that we could transfer learn
from when baking at scale. Conditions were not iden-
tical, however, resulting in some unexpected conse-
quences. For example, the large-scale production the
dough was allowed to sit longer, which unexpectedly,
and somewhat dramatically, increased the subjective
spiciness of the cookies for trials that involved cayenne.
Fortunately, our transfer learning scheme is relatively
robust to such shifts.

Vizier supports marking trials as infeasible, in which case
they do not receive an objective value. In the case of Bayesian
Optimization, previous work either assigns them a particu-
larly bad objective value, attempts to incorporate a proba-
bility of infeasibility into the acquisition function to penalize
points that are likely to be infeasible [3], or tries to explicitly
model the shape of the infeasible region [11, 12]. We take the
first approach, which is simple and fairly effective for the ap-
plications we consider. Regarding manual overrides, Vizier’s
stateless design makes it easy to support updating or deleting
trials; we simply update the trial state on the database. For
details on transfer learning, refer to section 3.3.

6 CONCLUSION

We have presented our design for Vizier, a scalable, state-
of-the-art internal service for black–box optimization within
Google, explained many of its design choices, and described its
use cases and benefits. It has already proven to be a valuable



platform for research and development, and we expect it will
only grow more so as the area of black–box optimization
grows in importance. Also, it designs excellent cookies, which
is a very rare capability among computational systems.
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