codeforces 580B Arpa and a list of numbers 前缀和+思维+分块 (调和级数)

本文介绍了一种通过枚举质数作为最大公约数(GCD),并利用贪心思想优化求解最小花费的方法。通过计算每个可能GCD下,对序列进行修改使GCD不为1所需的最小成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接


题意:

给出N个数,删除一个数的花费是X,改变一个数从num变成num+1的花费是Y,问将整个序列的Gcd改成不是1的最小花费。


思路:

首先考虑枚举gcd,我们知道gcd为素数肯定最优了,因为你枚举质数的倍数为gcd的话,排着枚举肯定会先枚举到质数,不是最优.

1e6以内的素数大约8e4个,而元素最多有5e5.这样还是会TLE。

我们知道,基于贪心的思想肯定是我们枚举一个gcd,然后对于一些数是删掉他最优一些是直接每次+1最优.

1.如果x<y 那么不需要每次+1,不如直接删除来的快。

2.x>=y 考虑一个比例 rate = x/y,这个也就是我们最多进行的+1操作次数,超过这个次数也不如直接删除来的更优.

那么假设我们现在枚举的gcd为质数p,那么对于一个数范围的区间 (k*p,(k+1)*p) ,在这个区间内肯定存在某个临界点,该点左面所有点全部删除,该点右面所有的值一直加到 (k+1)*p,来使得答案最优.

由上面我们所说的,rate为最多的加1的操作次数,那么给定区间我们可以计算出临界点为:

fen = ((k+1)*prime[i]-rate-1,k*prime[i])。

需要定义几个数组:

num[i] 小于等于i的数的个数

sum[i] 小于等于i的数的和.

复杂度:

枚举每个gcd,然后每次按照区间来处理, 对于每一个gcd最多有N/gcd 个区间.  N为数的最大值

所以复杂度近似一个调和级数 NlogN

#include<bits/stdc++.h>

using namespace std;
const int maxn = 2e6+10;
typedef long long ll;
const ll inf = 1e15;

int prime[maxn] = {0};
bool vis[maxn] ={1,1};
ll sum[maxn];
int num[maxn];
ll n,x,y,cnt=0;
void init()
{
	for(int i = 2;i < maxn ;i++)
	{
		if(!vis[i])
		{
			prime[cnt++] = i;
		}
		for(int j=0;j < cnt && (ll)i*prime[j] < maxn ;j++)
		{
			vis[i*prime[j]]=1;
			if(i % prime[j] == 0)
			break;
		}
	}
}
int main()
{
	init();
	while(cin>>n>>x>>y)
	{
		memset(sum,0,sizeof sum);
		memset(num,0,sizeof num);
		int a;
		int ma = 0;
		for(int i=1;i<=n;i++)
		{
		  scanf("%d",&a);
		  num[a]++;
		  sum[a] += a;
		  ma =max(a,ma);
		}
		for(int i=1;i <= 2*ma;i++)
		{
			num[i] += num[i-1];
			sum[i] += sum[i-1];
		}
		ll rate = x/y;
		ll ans = inf;
		for(int i = 0;i < cnt && prime[i-1] <= ma;i++)
		{
		    ll res = 0;
			for(int j=0;j*prime[i] <= ma;j++)
			{
				ll fen = max((ll)j*prime[i],(ll)(j+1)*prime[i]-rate-1);
				ll delnum = num[fen] - num[j*prime[i]];//计算有多少个数要被删除 
				ll addsum = sum[(j+1)*prime[i]]-sum[fen];//计算要加1的数的和. 
				ll addnum = num[(j+1)*prime[i]] - num[fen];//计算有多少个数要+1. 
				ll cons = addnum*(j+1)*prime[i] - addsum;//加完以后的和-没加之前的和,为需要加几次 
				res  += cons*y + delnum*x;//计算. 
				if(res > ans)
                    break;
			}
			ans = min (ans,res);
		}
		printf("%lld\n",ans);
	}
	return 0;
}


### 解题思路 #### 问题描述 Codeforces 1678C - Tokitsukaze and Strange Inequality 是一道关于排列组合与前缀和的应用问题。给定一个长度为 \( n \) 的排列数组 \( p \),需要统计满足条件 \( a < b < c < d \) 并且 \( p_a < p_c \) 同时 \( p_b > p_d \) 的四元组数量。 --- #### 核心思想 由于数据规模较小 (\( n \leq 5000 \)),可以直接通过枚举的方式解决问题。为了降低时间复杂度,引入 **前缀和** 技术来加速计算过程[^3]。 具体来说: - 枚举变量 \( a \) 和 \( c \),固定它们之后,目标是快速找到符合条件的 \( b \) 和 \( d \)。 - 使用预处理好的前缀和数组 `num` 来高效查询某个范围内满足特定关系的数量。 - 定义辅助数组 `sum` 表示对于固定的区间范围内的某些约束条件下的累积计数结果。 --- #### 实现细节 ##### 步骤一:构建前缀和数组 `num` 定义二维数组 `num[i][j]`,其中 `num[i][j]` 表示在序列的前 \( i \) 项中,有多少个元素大于 \( j \)。 该数组可以通过如下方式初始化: ```python n = len(p) max_val = max(p) # 初始化 num 数组 num = [[0] * (max_val + 2) for _ in range(n + 1)] for i in range(1, n + 1): for j in range(max_val + 1, -1, -1): # 反向遍历以保持正确性 if p[i - 1] > j: num[i][j] = num[i - 1][j] + 1 else: num[i][j] = num[i - 1][j] ``` 上述代码的时间复杂度为 \( O(n \cdot m) \),其中 \( m \) 是数组中的最大值。 --- ##### 步骤二:定义并填充辅助数组 `sum` 定义另一个二维数组 `sum[i][j]`,它表示当 \( a=i \), \( c=j \) 时,在区间 \([a+1, c-1]\) 中满足 \( p[b] > p[d] \) 的总贡献次数。 利用动态规划的思想逐步更新此数组: ```python sum_ = [[0] * (n + 1) for _ in range(n + 1)] bucket = [0] * (max_val + 1) for l in range(n - 1, 0, -1): bucket[p[l]] += 1 for r in range(l + 2, n + 1): sum_[l][r] = sum_[l][r - 1] + (num[r - 1][p[r - 1]] - num[l][p[r - 1]]) ``` 这里的关键在于如何有效累加当前区间的合法贡献,并借助之前已经计算的结果减少重复运算。 --- ##### 步骤三:枚举所有可能的 \( a \) 和 \( c \) 最后一步是对所有的 \( a \) 和 \( c \) 进行双重循环,并将对应位置上的 `sum[a][c]` 加入最终答案中: ```python result = 0 for a in range(1, n - 2): for c in range(a + 2, n): result += sum_[a][c] print(result) ``` 整个算法的核心部分即完成以上三个阶段的操作即可实现高效的解决方案。 --- ### 总结 本题主要考察的是对多重嵌套结构的有效简化以及合理运用前缀和技巧的能力。通过巧妙设计的数据结构能够显著提升程序运行效率至可接受水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Marcus-Bao

万水千山总是情,只给五角行不行

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值