近年来,卷积神经网络(CNN)在计算机视觉和自然语言处理等领域取得了显著的成就,但其“黑盒”特性也引发了人们对其可解释性的担忧。我们无法理解模型是如何做出决策的,这阻碍了其在安全敏感领域和社会影响力较大的领域的应用。为了解决这一问题,可解释人工智能(XAI)应运而生,它旨在为“黑盒”模型提供透明的解释方法。
现有的 XAI 方法主要分为两种:局部 XAI 和全局 XAI。局部 XAI 关注模型对特定输入样本的决策原因,而全局 XAI 则关注模型所学习的特征或概念之间的相互作用,旨在理解模型的整体行为和决策机制。然而,现有的方法在可解释性的三个关键指标——可靠性、因果性和可用性——之间难以取得平衡,这限制了它们的实际应用。
自监督语义解释框架:AS-XAI
为了克服现有方法的局限性,本文提出了一种自监督自动语义解释框架(AS-XAI),它利用自监督学习方法自动提取数据中的共同特征,并结合可视化方法准确地捕捉模型的全局决策。AS-XAI 的主要贡献包括:
- 自动全局语义解释: AS-XAI 通过自监督学习方法自动提取重要特征,无需人工概念标注,减少了人工因素在特征提取过程中带来的标签偏差和语义混淆。
- 严格正交的语义空间: AS-XAI 提取的语义空间具有更高的正交性,提高了语义解释的有效性。
- 细粒度可扩展性: AS-XAI 可以解释 CNN 决策的“哪里、什么、为什么”,有效地解决各种现实世界任务,包括对 OOD 类别的细粒度解释、对难以区分物种的辅助解释以及从不