️ 深入探讨 Apache Parquet:现代数据工程的利器

在数据工程的世界中,数据格式的选择如同选择一把合适的工具,直接关系到工作效率和数据处理的灵活性。经过八个小时的学习,我决定深入了解 Apache Parquet 这一文件格式。本文将结合我所学到的知识,带您走进 Parquet 的内部构造与其读写协议。

📊 数据存储的挑战

在处理大规模数据集时,数据的结构决定了存储和访问的效率。传统的行存储格式将数据按记录依次存储,就像一个数据库表的排列方式。这种格式在频繁访问整条记录时非常直观且有效。然而,当我们进行分析时,常常只需要从数百万行中提取几个特定的列。例如,假设我们有一个包含 50 列的大表,如果我们只对其中 3 列感兴趣,行存储格式仍然需要读取所有 50 列的数据,这无疑增加了不必要的开销。

相对而言,列存储格式通过按列存储数据,解决了这个问题。当需要特定列时,可以仅读取需要的数据,从而显著减少扫描的数据量。然而,简单地将数据存储在列中也有其缺点:写入或更新记录时需要接触多个列段,导致大量的 I/O 操作,尤其在处理大数据集时,写入性能可能大幅下降。

🔄 混合格式的优势

为了结合行存储和列存储的优点,Parquet 采用了一种混合格式。它将数据分组为“行组”,每个行组包含一部分行。在每个行组内,数据被称为“列块”,确保在磁盘上连续存储。在许多人的印象中,Parquet 似乎是纯粹的列存储格式,但实际上它在幕后组织了混合格式的数据结构。这种独特的设计使得 Parquet 在读取和写入方面都表现出色。

🏗️ Parquet 文件结构解析

元数据与术语

一个 Parquet 文件由多个核心部分组成:

  • 行组(Row Groups):每个行组包含数据集中的一部分行,数据在行组内按列组织。
  • 列块(Column Chunk):列块是在特定行组内某一列的数据。
  • 页面(Pages):列块进一步细分为页面,这是 Parquet 中最小的数据单元,包含数据页面、字典页面和索引页面等多种类型。

关键元数据

Parquet 文件的元数据是其重要部分,包含以下信息:

  • 魔数(Magic Number):位于文件开头和结尾的字节序列(PAR1),用于验证文件的有效性。
  • 文件元数据(FileMetadata):存储在文件尾部,包含行数、数据模式和行组元数据等信息。
  • 页面头(PageHeader):存储在页面数据中,包含值编码、定义编码和重复编码等信息。

✍️ Parquet 数据的写入与读取

数据写入过程

在 Parquet 中,数据写入由“Parquet Writer”负责。写入过程的概述如下:

  1. 应用程序发出写入请求,包含数据、压缩方案、编码方案等参数。
  2. Parquet Writer 收集信息并记录在文件元数据中。
  3. 写入魔数,计算行组数量并开始物理写入。
  4. 对于每个行组,迭代列列表并逐列写入。
  5. 每个列块按页面逐一写入,完成后构建列块元数据。

数据读取过程

读取过程则由“Parquet Reader”完成,步骤如下:

  1. 应用程序发出读取请求,包含输入文件、过滤器及所需列的集合。
  2. Reader 验证魔数,读取文件元数据。
  3. 过滤行组,定义列列表。
  4. 逐行组读取数据,直到所有行组被处理完毕。

📁 多文件与并行处理的优势

Parquet 文件的灵活性体现在可以将数据输出为多个文件,甚至可以按照特定标准进行分区。这使得在读取时可以利用多线程技术,提高效率。同时,单个 Parquet 文件在行组和列块的划分上允许并行读取,从而更好地利用系统资源。

🗜️ 编码技术的运用

Parquet 采用字典编码和游程编码(RLE)等技术,显著减少存储空间。字典编码通过用短的唯一键替换重复值,提升压缩率;而 RLE 则通过记录连续相同值的出现次数来进一步压缩数据。这种高效的编码方法,使得 Parquet 在处理大数据时表现出色。

🔍 OLAP 工作负载的优化

在分析工作负载中,利用统计信息过滤行组并选择所需列读取的能力,大幅提升了查询的效率。通过这样的布局,我们只需关注特定的行组和列,大大减少了数据扫描的工作量。

📝 结语

我计划在未来撰写更多关于这一文件格式的深度文章,期待与您分享更多见解。如果您有任何建议或想法,欢迎通过电子邮件与我联系。

参考文献

  1. Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, Marios Skounakis, Weaving Relations for Cache Performance.
  2. Parquet Official Docs.
  3. Wes McKinney, Extreme IO performance with parallel Apache Parquet in Python (2017).
  4. Michael Berk, Demystifying the Parquet File Format (2022).
  5. fastparquet source code GitHub repo.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值