图1:SEAP方法通过分析任务特定的激活模式(左)实现动态剪枝(右),如同大脑选择性地激活不同区域
🌌 当AI遇见脑科学——从神经元剪枝到认知效率
在2023年ChatGPT掀起的技术革命中,人们惊叹于大型语言模型(LLM)的"智慧",却鲜少注意到这些数字大脑惊人的"能耗"——一个1750亿参数的GPT-3模型,生成一段文字消耗的能量足以让灯泡亮上数小时。这就像人类大脑如果始终保持全功率运转,不出半小时就会因过热宕机。
来自中国人民大学的研究团队从神经科学中获得灵感,提出了SEAP(Sparse Expert Activation Pruning) 方法。这项突破性技术如同给AI装上"智能开关",让模型在处理不同任务时,能像人类大脑般动态激活相关"神经通路",将推理效率提升50%以上,而性能损失不到3%。
🔍 动机发现:任务激活模式如何模仿大脑分区
1.1 大脑分区理论的数字映射
神经科学家Mesulam在2000年提出的脑区划分理论指出,人类在处理数学问题时主要激活顶叶皮层,而语言理解则依赖颞叶区域。研究团队在LLM中发现惊人相似的现象:当模型处理数学题时,某些隐藏层神经元会形成独特的激活簇,而处理常识推理任务时,这些"数字神经元"会切换成完全不同的激活模式。