在人工智能的浩瀚星空下,大型语言模型(LLMs)如同一颗颗璀璨的恒星,照亮了从文本生成到复杂推理的广阔领域。然而,这些模型在推理任务中往往像是在迷雾中航行——尽管它们能抵达目的地,却常常因为固定的思维路径而错过更优的航线。2025年5月,一篇题为《SoftCoT++: Test-Time Scaling with Soft Chain-of-Thought Reasoning》的论文如同一盏明灯,照亮了如何让语言模型在推理时探索更广阔的思维海洋。这篇由Yige Xu等人撰写的论文提出了一种创新方法——SoftCoT++,它不仅提升了模型的推理能力,还以一种优雅的方式扩展了测试时计算的边界。本文将带您潜入SoftCoT++的奥秘,探索它如何让语言模型更聪明、更灵活。
🌌 从离散到连续:语言模型推理的进化之路
想象一下,你在解一道复杂的数学题,手中只有一支笔和一张纸。你可能会一步步写下计算过程,但每一步都局限于你能想到的具体数字和符号。这种“离散”的推理方式,正是传统Chain-of-Thought(CoT,思维链)方法的核心。CoT通过引导语言模型生成中间推理步骤,显著提升了它们在数学、常识和符号推理等任务中的表现。例如,早在2022年,魏杰森(Jason Wei)等人就发现,只需在提示中加入“让我们一步步思考”,模型就能展现出惊人的零样本推理能力。
然而,离散的CoT推理就像是用方格纸画画,虽然精准,却限制了表达的自由度。生成的具体文本(即“硬令牌”)可能丢失细微的信息,或者在自回归过程中累积错误。近年来,研究者们开始探索“连续