上下文工程是围绕大语言模型(LLM)的输入输出过程,系统性地设计和优化上下文信息,以提升模型性能。其核心模块包括:
- 写入(Write):将信息转化为模型可理解的格式。
- 选取(Select):从海量信息中筛选相关内容。
- 压缩(Compress):在上下文窗口限制下压缩信息,保留关键内容。
- 隔离(Isolate):避免不同任务或信息之间的干扰。
这些模块共同构成了上下文工程的“四步法”,为构建高效、稳定的AI Agent提供了基础。与提示词工程相比,上下文工程更注重系统化的信息架构,而非单一的措辞优化。
构建一个上下文设计方案
设计一个简单的上下文工程方案,以应用于长文本生成(如生成长篇文章)或AI Agent任务(如多任务对话助手)。以下是一个具体方案,基于上下文工程的四步法:
1. 写入(Write)
目标:将用户需求或任务描述转化为清晰、结构化的输入格式。
- 方法:
- 使用标准化的模板,确保输入信息包含任务目标、背景信息和约束条件。
- 例如,对于长文本生成,模板可以是:
任务:生成一篇关于[主题]的文章,长度为[字数],风格为[风格]。 背景信息:[相关领域知识或上下文]。 约束条件:[语气、受众、关键词等]。
- 示例:
任务:生成一篇关于“人工智能伦理”的文章,长度为1000字,风格为学术性。 背景信息:人工智能伦理涉及数据隐私、算法偏见、透明性等问题,近年来备受关注。 约束条件:面向学术读者,避免技术术语过度复