全文基于最新公开文献(IJCAI、ACL、arXIV 等)与作者实测,逐层拆解背后机制,并给出可落地的工程建议。
一、先给出结论:三类实验数据对齐
维度 | 事务性 Prompt | 精神控制类 Prompt | 相对提升 |
---|---|---|---|
回答完整率 | 72 % | 96 % | +33 % |
复杂推理准确率(GSM-8k) | 61 % | 85 % | +39 % |
主观“努力程度”评分(人工盲评 1-5) | 2.8 | 4.6 | +64 % |
平均输出长度 | 87 token | 218 token | +151 % |
数据来源:
- IJCAI-2024《NegativePrompt》
- ACL-2025《Priming Attacks》
- arXIV-2024《Ris