你也能看懂的:粒子群优化算法

本文深入探讨了粒子群优化算法(PSO),一种源于鸟群觅食行为的搜索算法。文章详细介绍了PSO的基本概念、流程及应用案例,展示了如何在MatLab中实现PSO,寻找函数最大值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

粒子群优化算法(PSO)最初是模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。而通过对动物社会行为的观察,发现在群体中对信息的社会共享提供一个演化的优势,并以此作为开发算法的基础。通过加入近邻的速度匹配、并考虑了多维搜索和根据距离的加速,形成了 PSO 的最初版本。


概念

设想这样一个场景:一群鸟在随机搜索食物,而这个区域里只有一块食物。所有的鸟都不知道食物在哪里,但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢?

最简单有效的就是搜寻目前离食物最近的鸟的周围区域,根据自己飞行的经验判断食物的所在。鸟群在整个搜寻的过程中,通过相互传递各自的信息,让其他的鸟知道自己的位置,通过这样的协作,来判断自己找到的是不是最优解,同时也将最优解的信息传递给整个鸟群,最终,整个鸟群都能聚集在食物源周围,即找到了最优解。

粒子群优化算法中,每个优化问题的解都是搜索空间中的一只鸟,我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值,每个粒子还有一个速度决定他们飞翔的方向和距离,然后粒子们就追随当前的最优粒子在解空间中搜索。

粒子群优化算法的目标是使所有粒子在多维超体中找到最优解。首先给空间中的所有粒子分配初始随机位置和初始随机速度。然后根据每个粒子的速度、问题空间中已知的最优全局位置和粒子已知的最优位置依次推进每个粒子的位置。随着计算的推移,通过探索和利用搜索空间中已知的有利位置,粒子围绕一个或多个最优点聚集或聚合。


粒子群优化算法的流程

  1. 在初始化范围内,对粒子群进行随机初始化,包括随机位置和速度
    设置最大的速度区间,防止超出最大的区间。位置信息即为整个搜索空间,我们在速度区间和搜索空间上随机初始化速度和位置

  2. 计算每个粒子的适应值

  3. 更新粒子个体的历史最优位置

  4. 更新粒子群体的历史最优位置

  5. 更新粒子的速度和位置
    更新公式为:
    速 度 : v i d k = w v i d k − 1 + c 1 r 1 ( p b e s t i d − x i d k − 1 ) + c 2 r 2 ( g b e s t d − x i d k − 1 ) 位 置 : x i d k = x i d k − 1 + v i d k − 1 速度:v_{id}^k=wv_{id}^{k-1}+c_1r_1(pbest_{id}-x_{id}^{k-1})+c_2r_2(gbest_{d}-x_{id}^{k-1})\\ \quad \\ 位置:x_{id}^k=x_{id}^{k-1}+v_{id}^{k-1} \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad vidk=wvidk1+c1r1(pbestidxidk1)+c2r2(gbestdxidk1)xidk=xidk1+vidk1
    其中: w w w 为惯性权重,调节搜索范围; c 1 、 c 2 c_1、c_2 c1c2 为加速度常数,调节学习最大步长; r 1 、 r 2 r_1、r_2 r1r2 为随机函数,取值范围 [ 0 , 1 ] [0,1] [01],增加搜索随机性; p b e s t i d pbest_{id} pbestid 为第 i 个粒子经历过的最好位置; g b e s t d gbest_{d} gbestd 为所有粒子经历过的最好位置

  6. 若未达到终止条件,则转第2步
    终止条件为最大迭代次数或全局最优位置满足最小界限

流程图:

Created with Raphaël 2.2.0 开始 初始化粒子群 计算每个粒子的适应值 更新粒子的速度和位置 终止条件 结束 yes no

案例解读

使用 MatLab 语言

初始化种群

% 求这个函数的最大值  
f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x);
figure(1);
ezplot(f,[0,0.01,20]);
N = 50;                         % 初始种群个数
d = 1;                          % 空间维数
ger = 100;                      % 最大迭代次数
limit = [0, 20];                % 设置位置参数限制
vlimit = [-1, 1];               % 设置速度限制
w = 0.8;                        % 惯性权重
c1 = 0.5;                       % 自我学习因子
c2 = 0.5;                       % 群体学习因子
for i = 1:d
    x = limit(i, 1) + (limit(i, 2) - limit(i, 1)) * rand(N, d);%初始种群的位置
end
v = rand(N, d);                  % 初始种群的速度
xm = x;                          % 每个个体的历史最佳位置
ym = zeros(1, d);                % 种群的历史最佳位置
fxm = zeros(N, 1);               % 每个个体的历史最佳适应度
fym = -inf;                      % 种群历史最佳适应度
hold on
plot(xm, f(xm), 'ro');title('初始状态图');
figure(2)

初始化种群的位置分布:
在这里插入图片描述
群体更新

iter = 1;
record = zeros(ger, 1);          % 记录器
while iter <= ger
    fx = f(x) ; % 个体当前适应度
    for i = 1:N
        if fxm(i) < fx(i)
            fxm(i) = fx(i);     % 更新个体历史最佳适应度
            xm(i,:) = x(i,:);   % 更新个体历史最佳位置
        end
    end
    if fym < max(fxm)
        [fym, nmax] = max(fxm);   % 更新群体历史最佳适应度
        ym = xm(nmax, :);      % 更新群体历史最佳位置
    end
    % 速度更新
    v = v * w + c1 * rand * (xm - x) + c2 * rand * (repmat(ym, N, 1) - x);
    % 边界速度处理
    v(v > vlimit(2)) = vlimit(2);
    v(v < vlimit(1)) = vlimit(1);
    x = x + v; % 位置更新
    % 边界位置处理
    x(x > limit(2)) = limit(2);
    x(x < limit(1)) = limit(1);
    record(iter) = fym; %最大值记录
    x0 = 0 : 0.01 : 20;
    plot(x0, f(x0), 'b-', x, f(x), 'ro');
    title('状态位置变化')
    pause(0.1)
    iter = iter+1;
end
figure(3);
plot(record);
title('收敛过程')
x0 = 0 : 0.01 : 20;
figure(4);plot(x0, f(x0), 'b-', x, f(x), 'ro');title('最终状态位置')
disp(['最大值:',num2str(fym)]);
disp(['变量取值:',num2str(ym)]);

优化过程:
在这里插入图片描述

求解最优化问题一直是遗传算法的经典应用领域,但是对于不同的最优化问题,遗传算法往往要重新设计“交叉”、“变异”算子,甚至要开发新的进化操作;另外遗传算法不容易理解、操作复杂、大多数情况下效率比较低。所以,寻求新的解决最优问题的算法一直是研究热点。对约束优化问题的求解,已有许多算法被提出。传统的方法有梯度映射法、梯度下降法、惩罚函数法、障碍函数法等,但是单纯使用这些方法不是效率很低就是适用范围有限。而进化计算由于其求解过程不依赖于目标函数的解析性质,同时又能以较大的概率收敛于全局最优解,所以用进化算法求解约束优化问题已是一个很有意义的研究方向。用进化计算求解约束优化问题时,最基本的思想就是:首先设法把个体带入可行域,然后再在可行域内找到尽可能好的解。求解约束优化问题最困难的主要是对约束条件的处理。目前,使用最广泛的对约束条件的处理方法是惩罚函数法。基于惩罚函数的进化算法一般来说都包含有许多惩罚系数,在实际应用时,只有正确设置这些系数才可能获得可行解,而要获得适当的惩罚系数则需要大量的实验为基础。在科学实践、工程系统设计及社会生产和经济发展中还有一类很常见到优化问题:多目标优化问题,因此研究多目标优化问题具有十分重要的意义。由于多目标优化问题不存在唯一的全局最优解,所以求解多目标优化问题实际上就是要寻找一个解的集合。传统的多目标优化方法是将多目标问题通过加权求和转化为单目标问题来处理的。但是,这种方法要求对问题本身有很强的先验认识,难以处理真正的多目标问题。进化计算由于其是一种基于种群操作的计算技术,可以隐并行的搜索解空间中的多个解,并能利用不同解之间的相似性来提高其并发求解的效率,因此进化计算比较合求解多目标优化问题。 粒子群优化(Particle Swarm Optimization, PSO)经济论文www.youzhiessay.com。 算法是由Kennedy和Eberhart于1995年提出的一种优化算法。它是对生物群体的社会行为进行的一种模拟,它最早源于对鸟群觅食行为的研究。在生物群体中存在着个体与个体、个体与群体间的相互作用、相互影响的行为,这种行为体现的是一种存在于生物群体中的信息共享的机制。PSO算法就是对这种社会行为的模拟,即利用信息共享机制,使得个体间可以相互借鉴经验,从而促进整个群体的发展。 PSO算法和遗传算法(Genetic Algorithm,GA)类似,也是一种基于迭代的优化工具,系统初始化为一组随机解,通过某种方式迭代寻找最优解。但PSO没有GA的“选择”、“交叉”、“变异”算子,编码方式也比GA简单。并且很多情况下要比遗传算法更有效率,所以基于粒子群算法处理优化问题中的是一个很有意义的研究方向。由于PSO算法容易理解、易于实现,所以PSO算法发展很快。在函数优化、系统控制、神经网络训练等领域得到广泛应用。 因此,本文在PSO算法基础上对PSO算法处理优化问题的能力及基于PSO算法,毕业论文网www.594wm.com,求解约束优化问题和多目标优化问题进行了深入研究。主要体现在以下几个方面:第一、介绍了有关粒子群优化算法的背景知识,阐述了算法产生的基础。 接着讨论了粒子群优化算法的发展和基本原理,并给出了算法的流程。通过对算法公式和参数设置进行的综合分析以及和其它优化算法进行比较,给出了粒子群优化算法实际使用时的指导原则。并讨论了算法在一些领域中的成功应用。第二、就粒子群优化算法在求解最优化问题中的应用,对无约束和有约束最优化问题分别设计了基于粒子群优化算法的不同的求解方法。对于无约束优化问题,本文直接用目标函数作为适应度函数,采用实数编码。对于约束优化问题,本文采用一种惩罚函数作为粒子群优化算法的适应度函数。 对两种问题分别应用了不同的测试函数对其进行了测试,结果表明了粒子群优化算法求解最优化问题的可行性。第三、针对约束优化问题本文在引入了半可行域的概念的基础上提出了竞争选择的新规则,并改进了基于竞争选择和惩罚函数的进化算法的适应度函数。并且本文规定了半可行解性质:半可行解优于不可行解,但劣于可行解。在半可行域内个体可直接用目标函数来评价。第四、结合粒子群优化算法本身的特点,本文设计了选择算子对半可行域进行操作,从而提出了利用PSO算法求解约束优化问题的新的进化算法。 第五、由于多目标优化问题和单目标优化问题是有本质的区别的:前者一般是一组或几组连续解的集合,而后者只是单个解或一组连续的解,所以PSO算法不能直接应用于多目标优化问题。因此本文对PSO全局极值和个体极值选取方式做了改进,提出了最优解评估选取的PSO算法,用于对多目标优化问题的非劣最优解集的搜索。实验结果证明了算法的有效性。粒子群算法的收敛性、基于粒子群算法求解不连续、多可行域的约束优化问题、基于粒子群算法求解高维多目标优化问题是本文的后续研究工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值