前馈神经网络--常见激活函数之Swish

本文介绍了Swish激活函数的数学表达式及其特性。Swish函数是介于线性函数与ReLU函数之间的平滑函数,其表达式为y=x⋅sigmoid(βx)。通过调整参数β,Swish函数可以在不同形态间变化,包括线性函数和ReLU函数。Swish函数具有下界无上界的特点,是非单调且平滑的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

函数表达式:

y = x⋅sigmoid(βx)

代码实现及可视化

import numpy as np

def sigmoid(x):
    a = np.exp(x)
    ans = a / ( a + 1)
    return ans

def swish(x,B):
    return x * sigmoid(B * x)

import matplotlib.pyplot as plt
c = ['k','r','b','m','g','c']
X = np.linspace(-5, 5, 20)
B_li = [0,0.1,0.5,1,50,100]
plt.figure()
for i in range(6):
    Y = list()
    for k in X:
        Y.append(swish(k,B_li[i]))
    plt.plot(X,Y,c[i])
plt.title('Swish_Image')
plt.xlabel('x')
plt.ylabel('y')
plt.legend(B_li)
plt.show()

在这里插入图片描述
当β取不同的值时,函数图像如上图所示
当β = 0时,Swish激活函数变为线性函数 f(x) = x/2,
当β = ∞时,Swish激活函数变为0或x,相当于Relu,
Swish函数可以看作是介于线性函数与ReLU函数之间的平滑函数。
(它的求导我有一些看不懂……)
在这里插入图片描述

函数特性

1.Swish函数有下界,无上界,sigmoid函数取值位于[0,1]之间

2.Swish函数是一个非单调函数

3.Swish函数和其一阶导数都具有平滑特性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_苏沐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值