Faster R-CNN网络结构学习

背景

Fast R-CNN存在一个缺点,它需要使用selective search提取框,这个方法比较慢,有时检测一张图片,大部分时间不是花费在神经网络分类上,而是花在selective search提取框上。而它的升级版Faster R-CNN中,使用RPN网络取代了selective search,不仅速度大大提高,而且获得了更加精确的结果。

网络结构

在这里插入图片描述
对于任意大小的图片,首先缩放至固定大小MxN,然后将图像送入网络;Conv中包含了13个conv层+13个relu层+4个pooling层;RPN网络首先经过3x3卷积,再分别生成positive anchors和对应bounding box regression偏移量,然后计算出proposal;而ROI Pooling层则利用proposals从feature maps中提取proposals feature送入后续全连接和softmax网络做classification。

关键点

RPN网络
在这里插入图片描述

  • 在feature map上滑动窗口
  • 建一个神经网络用于物体分类+框位置的回归
  • 滑动窗口的位置提供了物体的大体位置信息
  • 框的回归提供了框更精确的位置
    在这里插入图片描述
    RPN网络实际
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值