题目
请定义一个队列并实现函数 max_value 得到队列里的最大值,要求函数max_value、push_back 和 pop_front 的均摊时间复杂度都是O(1)。
若队列为空,pop_front 和 max_value 需要返回 -1
示例 1:
输入:
["MaxQueue","push_back","push_back","max_value","pop_front","max_value"]
[[],[1],[2],[],[],[]]
输出: [null,null,null,2,1,2]
示例 2:
输入:
["MaxQueue","pop_front","max_value"]
[[],[],[]]
输出: [null,-1,-1]
限制:
1 <= push_back,pop_front,max_value的总操作数 <= 10000
1 <= value <= 10^5
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/dui-lie-de-zui-da-zhi-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路
- 特别注意如果用Java做本题要熟悉Deque和Queue的API,对于Deque来说,能当队列也能当栈,本题会当队列来用,所以查看尾部元素应该用PeekLast(),而不是Peek(),因为Peek()相当于PeekFirst()
- 额外维护一个保存最大值的双向队列,从队头到队尾,应该是逆序的,即当队尾元素小于当前要进队的元素时,要while弹出去这些小元素,从而保证是逆序的
- 出栈的时候,只需要判断一下两个队列的队头是否相等,相等则把这个逆序双向队列也弹出。
Java AC
class MaxQueue {
private Queue<Integer> q = new LinkedList<>();
private Deque<Integer> dq = new LinkedList<>();
public MaxQueue() {
}
public int max_value() {
if(q.isEmpty()){
return -1;
}
return dq.peekFirst();
}
public void push_back(int value) {
q.add(value);
while(!dq.isEmpty()&& dq.peekLast()<value){
dq.removeLast();
}
dq.add(value);
}
public int pop_front() {
if(q.isEmpty()){
return -1;
}
int res = q.poll();
if(dq.peekFirst()==res){
dq.removeFirst();
}
return res;
}
}
/**
* Your MaxQueue object will be instantiated and called as such:
* MaxQueue obj = new MaxQueue();
* int param_1 = obj.max_value();
* obj.push_back(value);
* int param_3 = obj.pop_front();
*/