Open3D点云数据处理(二十):最小二乘直线拟合(三维)

本文介绍了最小二乘法在三维直线拟合中的应用,详细阐述了原理并提供了Open3D实现的代码示例。通过计算直线拟合的评估指标,如残差平方和、均方误差、均方根误差和决定系数,来评估模型的拟合效果。同时,还解析了numpy.linalg.lstsq()函数在解决线性最小二乘问题中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


专栏目录:Open3D点云数据处理(Python)


1 最小二乘三维直线拟合原理

最小二乘三维直线拟合的原理是通过最小化数据点到直线距离的平方和,找到最优的直线模型来拟合给定数据集。这个距离是指数据点到直线的垂线距离。

三维直线通常表示为两个平面的交线,形如
{ A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 \begin{cases} A_1x+B_1y+C_1z+D_1=0\\ A_2x+B_2y+C_2z+D_2=0\\ \end{cases} {

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孙 悟 空

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值