并发和并行的区别(图解)

在学习多线程/进程编程时,我们经常会遇到并发和并行这两个名词,它们看起来是一个概念,都是“多个线程/进程同时执行”的意思,但实际上它们是有区别的,甚至说不是一码事。

很多教材也都解释了并发和并行的区别,例如:

  • 并行是指两个或者多个事件在同一时刻发生,而并发是指两个或多个事件在同一时间间隔发生。
  • 并行是在不同实体上的多个事件,并发是在同一实体上的多个事件。

不过这种解释非常晦涩难懂,估计只有作者自己才能搞明白。这篇文章,我将站在一个大龄程序员的视角,使用通俗易懂的语言来重新剖析并发和并行的区别,并配上优雅的图片,以加深读者的理解。

并发(Concurrency)

早期计算机的 CPU 都是单核的,一个 CPU 在同一时间只能执行一个进程/线程,当系统中有多个进程/线程等待执行时,CPU 只能执行完一个再执行下一个。

为了表述简单,下文我们将不再区分进程和线程,而将它们统一称为“任务”。在不同的场景下,一个任务可能是进程,也可能是线程。

计算机在运行过程中,有很多指令会涉及 I/O 操作,而 I/O 操作又是相当耗时的,速度远远低于 CPU,这导致 CPU 经常处于空闲状态,只能等待 I/O 操作完成后才能继续执行后面的指令。

为了提高 CPU 利用率,减少等待时间,人们提出了一种 CPU 并发工作的理论。

所谓并发,就是通过一种算法将 CPU 资源合理地分配给多个任务,当一个任务执行 I/O 操作时,CPU 可以转而执行其它的任务,等到 I/O 操作完成以后,或者新的任务遇到 I/O 操作时,CPU 再回到原来的任务继续执行。

下图展示了两个任务并发执行的过程:
在这里插入图片描述

图1:单核 CPU 执行两个任务

虽然 CPU 在同一时刻只能执行一个任务,但是通过将 CPU 的使用权在恰当的时机分配给不同的任务,使得多个任务在视觉上看起来是一起执行的。CPU 的执行速度极快,多任务切换的时间也极短,用户根本感受不到,所以并发执行看起来才跟真的一样。

操作系统负责将有限的 CPU 资源分配给不同的任务,但是不同操作系统的分配方式不太一样,常见的有:

  • 当检测到正在执行的任务进行 I/O 操作时,就将 CPU 资源分配给其它任务。
  • 将 CPU 时间平均分配给各个任务,每个任务都可以获得 CPU 的使用权。 在给定的时间内,即使任务没有执行完成,也要将 CPU 资源分配给其它任务,该任务需要等待下次分配 CPU 使用权后再继续执行。

将 CPU 资源合理地分配给多个任务共同使用,有效避免了 CPU 被某个任务长期霸占的问题,极大地提升了 CPU 资源利用率。

并行(Parallelism)

并发是针对单核 CPU 提出的,而并行则是针对多核 CPU 提出的。和单核 CPU 不同,多核 CPU 真正实现了“同时执行多个任务”。

多核 CPU 内部集成了多个计算核心(Core),每个核心相当于一个简单的 CPU,如果不计较细节,你可以认为给计算机安装了多个独立的 CPU。

多核 CPU 的每个核心都可以独立地执行一个任务,而且多个核心之间不会相互干扰。在不同核心上执行的多个任务,是真正地同时运行,这种状态就叫做并行。

例如,同样是执行两个任务,双核 CPU 的工作状态如下图所示:
在这里插入图片描述

图2:双核 CPU 执行两个任务

双核 CPU 执行两个任务时,每个核心各自执行一个任务,和单核 CPU 在两个任务之间不断切换相比,它的执行效率更高。

并发+并行

在图2中,执行任务的数量恰好等于 CPU 核心的数量,是一种理想状态。但是在实际场景中,处于运行状态的任务是非常多的,尤其是电脑和手机,开机就几十个任务,而 CPU 往往只有 4 核、8 核或者 16 核,远低于任务的数量,这个时候就会同时存在并发和并行两种情况:所有核心都要并行工作,并且每个核心还要并发工作。

例如一个双核 CPU 要执行四个任务,它的工作状态如下图所示:

在这里插入图片描述

每个核心并发执行两个任务,两个核心并行的话就能执行四个任务。当然也可以一个核心执行一个任务,另一个核心并发执行三个任务,这跟操作系统的分配方式,以及每个任务的工作状态有关系。

总结

并发针对单核 CPU 而言,它指的是 CPU 交替执行不同任务的能力;并行针对多核 CPU 而言,它指的是多个核心同时执行多个任务的能力。

单核 CPU 只能并发,无法并行;换句话说,并行只可能发生在多核 CPU 中。

在多核 CPU 中,并发和并行一般都会同时存在,它们都是提高 CPU 处理任务能力的重要手段。

<think>我们正在讨论并发并行区别。根据用户提供的引用,我们可以总结如下: 1. **定义**: - **并发(Concurrency)**:指在**相同的时间段内**处理多个任务。这些任务可能会交替执行,通过调度机制(如时间片轮转)实现宏观上的“同时”效果。在单核CPU上,通过快速切换任务实现并发。 - **并行(Parallelism)**:指在**同一时刻**同时执行多个任务。这需要多个处理单元(如多核CPU)的支持,每个任务在一个独立的处理单元上同时运行。 2. **核心区别**: - **执行方式**: - 并发:多个任务交替执行(宏观上同时,微观上交替)。 - 并行:多个任务真正同时执行(宏观微观都同时)。 - **资源需求**: - 并发:只需一个处理单元(如单核CPU),通过任务调度实现。 - 并行:需要多个处理单元(如多核CPU或多台机器)。 - **任务数量**: - 并发:任务数量通常大于处理单元数量,通过分时复用实现。 - 并行:任务数量通常处理单元数量匹配(理想情况下)。 3. **性能应用场景**: - **并发**: - 优点:提高资源利用率(如CPU在I/O等待时切换任务),适合I/O密集型任务(如Web服务器、数据库查询)。 - 缺点:存在上下文切换开销,可能降低单任务性能。 - **并行**: - 优点:显著提升计算密集型任务性能(如科学计算、图像处理)。 - 缺点:需要硬件支持(多核),任务拆分同步可能复杂。 4. **技术实现**: - 并发:多线程、异步编程(如Java的`CompletableFuture`、Python的`asyncio`)。 - 并行:多进程、分布式计算(如Java的`parallelStream()`、MPI)。 5. **实际案例**: - **单核CPU**:只能实现并发(如多线程交替执行)。 - **多核CPU**: - 若任务分配在同一核心 → 并发。 - 若任务分配在不同核心 → 并行(如Java的`ForkJoinPool`)。 ### 回答结构: 1. **定义对比**:用表格清晰展示核心差异。 2. **执行原理**:结合CPU调度图解。 3. **场景示例**:列举典型应用场景。 4. **性能影响**:分析开销收益。 5. **相关问题**:延伸思考题。 ### 最终回答:</think>### 并发并行的核心区别 以下是两者的本质差异关联分析(基于系统执行原理): | **维度** | **并发(Concurrency)** | **并行(Parallelism)** | |----------------|------------------------------------------------|--------------------------------------------| | **定义** | 同一时间段内处理多个任务(宏观上“同时”,微观上交替执行)[^1][^2] | 同一时刻执行多个任务(宏观微观均真正同时)[^1][^2] | | **硬件基础** | 单核CPU即可实现(通过时间片轮转)[^3] | 必须依赖多核CPU/分布式系统[^2] | | **执行原理** | 任务调度器分配时间片(如15ms),线程快速切换[^3]:<br> $$ \text{CPU利用率} = 1 - \text{I/O等待时间占比} $$ | 任务直接映射到物理核心:<br> $$ \text{加速比} \approx \frac{T_{\text{串行}}}{T_{\text{并行}}/n} $$($n$=核心数) | | **资源需求** | 1个处理器 + 调度算法(如抢占式调度)[^2] | $n$个处理单元($n \geq 2$)[^2] | | **任务关系** | 任务间可独立或存在依赖(需同步机制)[^1] | 任务通常可独立拆分(如MapReduce)[^2] | ```mermaid graph LR A[单核CPU] --> B[并发] C[多核CPU] --> D[并发+并行] B -->|任务切换| E[线程A→线程B→线程A] D -->|核心分配| F[核心1:线程X<br>核心2:线程Y] ``` ### ⚙️ 典型场景对比 | **场景** | **并发** | **并行** | |----------------------|--------------------------------------|--------------------------------------| | **单核Web服务器** | ✅ 交替处理HTTP请求(如Nginx事件循环) | ❌ 无法实现 | | **视频转码** | ❌ 单线程效率低 | ✅ 分割帧到多核同时编码(FFmpeg) | | **数据库查询** | ✅ I/O等待时切换其他查询(I/O密集型)[^2] | ✅ 多核并行扫描索引(计算密集型)[^2] | | **Java Stream处理** | `stream.forEach()`(顺序执行) | `stream.parallel().forEach()`(并行) | ### ⚖️ 性能复杂度分析 | **特性** | **并发** | **并行** | |------------------|------------------------------------|----------------------------------| | **优势** | 提高I/O利用率,减少CPU空闲[^2] | 线性提升计算吞吐量(理想情况)[^2] | | **开销来源** | 上下文切换(1-10μs/次)、锁竞争[^1] | 数据分片/通信成本、负载均衡 | | **编程复杂度** | 需处理竞态条件/死锁(如`synchronized`) | 需设计无状态任务/避免共享内存 | | **适用领域** | UI响应、高并发服务、I/O密集型任务[^2] | 科学计算、渲染、批处理[^2] | > 💡 **关键洞察**: > - **并发并行的基础**:并行系统必然包含并发调度(如多核CPU仍需管理核内线程)[^3] > - **现代应用混合使用**: > ```java > // Java示例:并发线程池 + 并行计算 > ExecutorService pool = Executors.newFixedThreadPool(4); > pool.submit(() -> IntStream.range(0,1000).parallel().sum()); > ``` --- ### ❓ 相关问题 1. **如何在单核CPU上实现“伪并行”?** (时间片轮转调度算法原理[^3]) 2. **为什么I/O密集型任务更适合并发而非并行?** (分析I/O等待CPU计算的资源瓶颈[^2]) 3. **多线程编程中如何平衡并发并行?** (线程池配置策略`ForkJoinPool`设计[^1]) 4. **GPU并行计算CPU并发有何本质区别?** (SIMD架构 vs SMT超线程[^2]) 5. **如何量化并行程序的加速比极限?** (Amdahl定律公式推导:$$ S = \frac{1}{(1 - P) + \frac{P}{n}} $$)
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

椰汁菠萝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值