异构图神经网络用于供应链金融中的欺诈检测和解释 Heterogeneous graph neural networks for fraud detection and explanation in s

供应链金融欺诈检测极具挑战,本文提出多任务学习框架MultiFraud。它基于异构图神经网络,利用多视图异构信息,能让多领域共享嵌入,增强建模能力。通过在五个数据集上实验,结果表明该框架在欺诈检测和跨领域解释方面有效,优于现有方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


论文名称:Heterogeneous graph neural networks for fraud detection and explanation in supply chain finance

摘要

发现供应链中的欺诈借款人对于金融服务提供商来说是一项至关重要的任务。对正在进行的业务中借款人的交易进行检查,以支持提供商是否放贷的决定。考虑到供应链业务中的多个参与者,借款人可能使用复杂的手段来欺骗,使欺诈检测变得具有挑战性。在这项工作中,我们提出了一个多任务学习框架,MultiFraud,用于复杂欺诈检测并提供合理的解释。基于异构图神经网络,在检测框架中利用来自实体周围多视图的异构信息。MultiFraud使多个领域能够共享嵌入并增强欺诈检测的建模能力。所开发的解释器提供了跨多个图的全面解释。在五个数据集上的实验结果表明了该框架在欺诈检测和解释跨领域方面的有效性。

1. 引言

近年来,供应链金融市场发展迅速,有效缓解了许多中小企业(SMEs)的融资困难。然而,供应链不仅仅是由上下游企业组成的线性链条。企业之间的交易、社交和合作关系构成了复杂的供应链网络。供应链中的数据包括商业流、信息流、资金流和物流。供应链中的多源异构数据和关系给供应链金融中的欺诈检测带来了挑战。交易的长度和复杂性为欺诈者[1]提供了机会,即使它们经过一系列技术解决方案的处理。许多先前的工作[2-4]已经利用机器学习和深度学习方法分析了个体企业或交易中的欺诈。他们取得了有限的成功,因为他们很少关注研究企业之间及其在供应链中的业务交易中的大量互动。由于其强大的属性和关系学习能力,图神经网络[5]吸引了来自各个领域的研究人员的注意。作为一个自然网络,供应链可以通过结合图神经网络有效地进行挖掘。

在供应链金融中,应收账款融资是最广泛使用的模式[6]。它在许多国家如美国和中国变得流行[7]。截至2023年7月底,中国工业企业的应收账款总额达到23.11万亿元,同比增长9.7%。供应链应收账款是一种核心企业将应收账款转让给银行和供应商以获得银行贷款的融资方式。此外,中国的供应链金融服务平台利用区块链技术使应收账款可分离、可持有和可转让。供应链应收账款可以在多个供应商之间分割和转移,以增加灵活性和曝光度。

这项研究旨在解决供应链金融中欺诈检测面临的以下三个挑战:

首先,有效利用来自多视图的异构信息进行欺诈检测。供应链金融中的多视图包含不同层次。首先,它包含多个不同实体的视角。其次,每个实体本身包含多个不同属性和关系。在供应链中,关于交易的信息有多种异构类型,如金额、支付令牌和支付时间。先前的工作[8,9]构建了用于欺诈检测的交易图,以捕获交易之间的互动。然而,与消费金融不同,供应链涉及企业之间的长期和复杂交易,其中包含大量可利用的信息。关于企业的信息有[^0]多种异构类型,如注册时间、注册资本、实际资本、股东、高管、法人、电话号码和电子邮件地址。先前的研究[10-12]通过探索性因素分析分析并证明了供应链关系与中小企业的金融风险之间的强相关性。构建不同的图来捕获不同视角的各种实体增强了框架的能力和灵活性,用于表示学习。

其次,通过利用多视图之间的相关性来提高欺诈检测性能。欺诈标签存在于不同视图中。例如,在企业中,它包括信用风险、破产等。在交易中,主要指欺诈交易和贷款违约。不同实体的欺诈标签是相关的。例如,一个已经失去信用的公司可能会申请不会偿还的贷款。此外,在平台上有多次欺诈交易记录的公司声誉较差。还应注意,交易中的类别不平衡问题在交易中更为明显[13,14]。大多数先前的欺诈检测方法[810,15]只关注这些任务中的一个。开发一个利用两个领域中数据的丰富性和多样性的模型对于提高性能至关重要。

最后,提供跨多个视图的欺诈预测解释。欺诈检测是风险控制者的一种辅助手段,因为他们在采取行动之前需要对欺诈有一定的了解。解释对于供应链金融欺诈检测至关重要。由于供应链金融中信息的多源性,解释器需要提供更丰富的内容。虽然现有的工作[9,16,17]提供了解释性,但对于多个图并不适用。

为了解决这些问题,我们提出了MultiFraud,一个基于异构图神经网络的欺诈检测和解释的多任务框架。

为了解决处理多源异构信息的挑战,我们分别为不同视图构建异构图以保持其语义。我们利用异构GNN来充分捕获特征和异构关系属性。为了构建视图之间的相关性,我们提出了一个基于注意力的组件来共享实体的嵌入。我们开发了一个解释器组件,在多个图上生成特征和边权重以提供解释性。

贡献总结如下:

(1) 据我们所知,我们是首个同时处理供应链金融中多视图欺诈检测的研究。

(2) 我们提出了一个多任务学习框架MultiFraud,利用异构GNN来检测供应链金融中的欺诈。

(3) MultiFraud可以在多个异构图上提供全面的解释。

(4) 我们在五个数据集上进行实验评估MultiFraud的有效性。结果表明它优于最先进的方法。

本文的其余部分结构如下:第2节介绍了业务模型。第3节调查了相关工作并分析了它们在供应链欺诈检测中的局限性。第4节描述了异构图构建和MultiFraud框架的详细组件。第5节报告了实验评估结果。第6节总结了工作并强调了未来的研究方向。

2. 应收账款融资

本节描述了供应链应收账款融资的详细业务流程。

图1. 供应链应收账款融资的业务流程。

2007年的《物权法》首次在法律层面明确了将应收账款纳入中国动产担保范围。应收账款融资是金融机构根据核心企业与上下游中小企业之间的实际交易提供融资给中小企业的一种方式。这有助于缓解中小企业的融资困难和资金约束。我们在图1中展示了应收账款融资的业务模型,其中包含三个主要角色:金融机构、核心企业和中小企业。具体的业务流程如下:

(1) 中小企业与核心企业签订采购合同。

(2) 中小企业从核心企业获得应收账款。

(3) 中小企业向金融机构申请供应链应收账款融资。

(4) 金融机构对应收账款、文件和信用进行预装调查。

(5) 金融机构签署贷款协议向中小企业放贷,并通知核心企业应收款支付。

(6) 核心企业按期将应收账款支付给金融机构。

(7) 银行将剩余资金转给中小企业。

3. 文献

对于供应链金融中的风险管理系统,研究[35]探讨了风险管理系统的建立。该研究指出了利用大数据分析和机器学习工具的重要性。研究[36]提出了一种分布式、基于传感器的架构,用于监测业务流程中的风险。另一项研究[37]构建了一个用于可视化供应链金融中订单、物流和库存的系统。然而,该系统仅可视化业务信息,并未分析和可视化供应链风险。目前的风险管理平台[38]主要依赖于专家规则和风险指标模型。

研究[39]总结了应收账款融资风险管理的风险评估方法,包括主成分分析、人工神经网络、层次分析法、逻辑回归分析和模糊综合评价。另一项研究[40]评估了用于风险识别的技术在当前网络化供应链环境中的有效性。先前的研究采用了机器学习技术进行供应链金融中的欺诈检测,包括分布式CNN[41]、Rpart、C5、随机森林、SVM[42]和XGBoost[43]。

图2. 应收账款的多级流动示例。

表1

方法比较。

方法 异构性 多任务 可解释性
FDGars [19]
Geniepath [20]
x \boldsymbol{x} x x \boldsymbol{x} x x \boldsymbol{x} x
FD-NAG [21]
GraphConsis [22] ✓ \checkmark 4 \boldsymbol{4} 4 x \boldsymbol{x} x
CARE-GNN [23]
PC-GNN [24]
GAS [25]
GEM [26] [27]
SemiGNN [27]
BotSpot++[28]
MAFI [29]
IHGAT [8]
ST-GNN [10]
HAT [15] ✓ \checkmark
MvMoE [30]
GraphRfi [31]
✓ \checkmark
GCAN [32]
Know-GNN [33]
x \boldsymbol{x} x
xFraud [9] ✓ \checkmark ✓ \checkmark
Li et al. [34] ✓ \checkmark ✓ \checkmark
MultiFraud(我们的) ✓ \checkmark

图神经网络在各个领域中变得越来越受欢迎,包括知识图谱[44]、推荐系统[45]、社交网络[46]和交通网络[47]。GNN已被用于欺诈检测,可分为同质图和异质图。FdGars [19]、GeniePath [20]、FD-NAG [21]构建同质图,并采用GNN进行欺诈检测。对于异质图,GraphConsis [22]、CARE-GNN [23]、PC-GNN [24]构建包含一种节点类型和多种关系的图。GAS [25]结合异质图和同质评论图生成嵌入。GEM [26]、SemiGNN [27]、BotSpot++[28]、MAFI [29]采用异质图进行欺诈检测。异质图的好处在于它可以在一个图中对多维信息和关系进行建模以进行学习和查看结果。大多数先前的研究集中在消费者金融和垃圾评论上,其中用户是个人而不是企业。他们的方法既未考虑复杂的交易,也未考虑复杂的企业关系。

ST-GNN [10]进行数据分析,揭示供应链关系对中小企业财务风险分析的影响。它提出了一种空间-时间感知GNN来预测贷款违约。HAT [15]基于具有注意机制的异质GNN预测企业破产。IHGAT [8]从用户行为构建意图,并设计了一个包括交易和意图的异质网络。xFraud [9]构建了一个包含买家、支付令牌、送货地址和电子邮件的异质交易图,以学习交易表示。这些基于GNN的方法针对单一视图和单一任务。

此外,我们的工作涉及通过多任务框架进行欺诈检测。GraphRfi [31]提出通过GCN和神经随机森林进行推荐和欺诈检测。MvMoE [30]提出通过专家混合网络同时解决信用风险和限额预测。它结合了异构多视图数据,包括用户资料、顺序行为和社会关系。MLP、双向LSTM和GNN被用来编码每个视图的特征。当前的多任务解决方案设计用于相同节点域,并且无法同时处理不同实体的任务。此外,它们仅在多任务学习级别整合来自不同视图的信息,没有多个视图之间的直接交互。

在可解释性方面,随着黑盒方法在金融服务等受监管领域中的应用越来越多,对可解释性的需求也在增加。与图像和文本等其他领域相比,GNN的可解释性处于早期阶段。调查报告 [ 50 , 51 ] [50,51] [50,51]列出了最近提出的几种方法,并分析了它们的优缺点,包括GNNExplainer [16]、PGExplainer [17]、SubgraphX [52]、XGNN [53]等。在欺诈检测的可解释性方面,GCAN [32]使用模型推导的共同注意权重来生成关于假新闻证据词的可解释性。KnowGNN [33]使用图功能依赖规则将专家规则转换为图。另一项工作[34]通过考虑比特币场外交易数据上的边权重扩展了GNNExplainer。xFraud [9]将GNNExplainer扩展到不同节点和边类型的异构图。当前研究无法提供关于多个视图图的可解释性。

以上分析表明,现有研究无法满足我们在第1节中提出的挑战。此外,目前没有方法可以解决供应链金融中欺诈检测的三个关键所需功能(见表1)。它们应该能够通过异构图模拟不同类型的信息,通过多任务学习共享学习,并为决策提供可解释性。

4. 方法论

本节介绍了我们提出的模型MultiFraud的技术细节。MultiFraud框架如图3所示。 (1) 多视图表示学习:利用异构图神经网络学习实体嵌入。 (2) 多实体嵌入共享:利用基于注意力的组件在实体之间共享嵌入。 (3) 多任务欺诈检测器:利用多任务学习联合训练多个实体的欺诈检测。 (4) 多视图欺诈解释:提供跨多个视图的节点和边解释。

图3. MultiFraud框架。

4.1. 异构图构建

我们构建了两个由供应链金融中关键实体组成的异构图:企业和交易。给定企业图 G e = { { V p ∣ p ∈ P } , { E q ∣ q ∈ Q } } \mathcal{G}_{e}=\left\{\left\{\mathcal{V}_{p} \mid p \in \mathcal{P}\right\},\left\{\mathcal{E}_{q} \mid q \in \mathcal{Q}\right\}\right\} Ge={ { VppP},{ EqqQ}},其中 ∣ P ∣ |\mathcal{P}| P种节点类型和 ∣ Q ∣ |\mathcal{Q}| Q种边类型。 V p \mathcal{V}_{p} Vp是类型 p p p的节点集, E q \mathcal{E}_{q} Eq是类型 q q q的边集。节点类型集 P = { e , l , s , x , t , m } \mathcal{P}=\{e, l, s, x, t, m\} P={ e,l,s,x,t,m}在异构企业图中包括来自企业、法人、股东、执行人、电话和电子邮件的节点;边类型集为 Q = { e e , e l , e s , e x , e t , e m } \mathcal{Q}=\{e e, e l, e s, e x, e t, e m\} Q={ ee,el,es,ex,et,em},其中 E e e \mathcal{E}_{e e} Eee包括通过企业成为另一家企业股东建立的所有边。其他边类型表示企业与 { l , s , x , t , m } \{l, s, x, t, m\} { l,s,x,t,m}中的另一种节点类型相关。每个企业节点携带包含商业信息(如注册时间、注册资本、实收资本)、司法信息(如行政处罚和法律诉讼)和业务信息(如招标、证书等)的特征。

类似地,构建了一个交易图 G t = { { ℧ p ∣ p ∈ P ′ } , { E q ′ ∣ q ∈ Q ′ } } \mathcal{G}_{t}=\left\{\left\{\mho_{p} \mid p \in \mathcal{P}^{\prime}\right\},\left\{\mathcal{E}_{q}^{\prime} \mid q \in \mathcal{Q}^{\prime}\right\}\right\} Gt={ { ppP},{ EqqQ}}。为了预测每笔交易的合法性,我们遵循了 [ 8 , 9 ] [8,9] [8,9]中描述的相同方法,将每笔交易视为图中的一个节点。节点类型集 P ′ = { t , s , r , n , d } \mathcal{P}^{\prime}=\{t, s, r, n, d\} P={ t,s,r,n,d}包括交易、发送方、接收方、网络信息和设备信息,边类型集为 Q ′ = { t s , t r , t n , t d } \mathcal{Q}^{\prime}=\{t s, t r, t n, t d\} Q={ ts,tr,tn,td}。如果一笔交易与 P ′ = { s , r , n , d } \mathcal{P}^{\prime}=\{s, r, n, d\} P={ s,r,n,d}中的另一种节点类型有关,则在这两个节点之间建立一条边。每个交易节点携带包含交易金额、赎回期限等信息的节点特征。由于交易数量远远大于企业数量,构建的交易图的规模可能非常庞大。尽管当前的图神经网络模型能够在大规模图上训练,例如IHGAT [8]和xFraud [9]分别利用拥有176万和11亿节点的交易图,但为了在实际应用中控制资源,可以指定交易图的特定时间范围以减小其规模。例如,可以仅考虑过去六个月内企业的交易记录。

4.2. 多视图表示学习

多视图表示学习旨在利用异构图神经网络为实体学习节点嵌入。

定义 1(元路径)

元路径 P \mathrm{P} P 被定义为形式为 P 1 → Q 1 P 2 → Q 2 ⋯ → Q l P l + 1 \mathcal{P}_{1} \xrightarrow{\mathcal{Q}_{1}} \mathcal{P}_{2} \xrightarrow{\mathcal{Q}_{2}} \cdots \xrightarrow{\mathcal{Q}_{l}} \mathcal{P}_{l+1} P1Q1 P2Q2 Ql Pl+1(简写为 P 1 P 2 P l + 1 \mathcal{P}_{1} \mathcal{P}_{2} \mathcal{P}_{l+1} P1P2Pl+1)的路径,描述了节点类型 P 1 \mathcal{P}_{1} P1 P l + 1 \mathcal{P}_{l+1} Pl+1 之间的关系 Q = Q 1 ∘ Q 2 ∘ ⋯ ∘ Q l Q=\mathcal{Q}_{1} \circ \mathcal{Q}_{2} \circ \cdots \circ \mathcal{Q}_{l} Q=Q1Q2Ql,其中 ∘ \circ 是关系的组合运算符。

对于企业图 G e = { V , E } \mathcal{G}_{e}=\{\mathcal{V}, \mathcal{E}\} Ge={ V,E},每个企业节点 v ∈ V v \in \mathcal{V} v

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数智笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值