【题解】1126 Eulerian Path (25分)⭐⭐⭐ 【欧拉路径】

本文详细解析了如何判断一个无向图是否为欧拉图或半欧拉图,介绍了欧拉路径和欧拉回路的概念,并通过代码示例展示了如何使用深度优先搜索(DFS)来判断图的连通性和点的度数特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题解】1126 Eulerian Path (25分)⭐⭐⭐ 【欧拉路径】

题意:

给出一个N个点M条边的无向图,判断他是否为欧拉图,半欧拉图或者非欧拉图

题解:

存在欧拉回路为欧拉图,存在欧拉路径但是没有回路为半欧拉图,其余为半欧拉图。
由于是无向图,判断欧拉路径即为所有点度数均为偶数,欧拉回路即恰好只有2个点为奇数。
题目很友好,这些提示都给出了。但是要注意,存在欧拉路径的先决条件是图联通,不难想到,如果图都不连通,如果存在欧拉路径呢?

判断图联通有并查集和DFS两种方法,这里都可以使用

经验小结:

#include<bits/stdc++.h>
using namespace std;
#define ms(x, n) memset(x,n,sizeof(x));
typedef  long long LL;
const int INF = 1 << 30;
const int MAXN = 1010;

int N, M, G[MAXN][MAXN], d[MAXN];
int cnt = 0;    //连通点的数量
bool vis[MAXN];
void Dfs(int u){
    vis[u] = true;
    ++cnt;
    for(int v = 1; v <= N; ++v)
        if(!vis[v] && G[u][v])
            Dfs(v);
}
int main() {
    ios::sync_with_stdio(false);
    int u, v;
    cin >> N >> M;
    while(M--){
        cin >> u >> v;
        G[u][v] = G[v][u] = true;
        ++d[u], ++d[v];
    }
    int odd = 0;
    for(int i = 1; i <= N; ++i){
        if(d[i]%2 == 1)
            ++odd;
        if(i == N)
            cout << d[i] << endl;
        else
            cout << d[i] << ' ';
    }
    Dfs(1);
    if(cnt==N && odd == 2)
        cout << "Semi-Eulerian\n";
    else if(cnt==N && odd == 0)
        cout << "Eulerian\n";
    else
        cout << "Non-Eulerian\n";
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值