动态规划

目录

基本思想

基本步骤

基本要素

基本框架


基本思想

把求解的问题分成许多阶段或多个子问题,然后按顺序求解各个子问题。前一个子问题的解为后一个子问题的求解提供了有用的信息。在求解任何一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解,依次解决各子问题,最后一个子问题就是问题的解。 

基本步骤

(1)划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。注意这若干个阶段一定要是有序的或者是可排序的(即无后向性),否则问题就无法用动态规划求解。

(2)选择状态:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。当然,状态的选择要满足无后效性。

(3)确定决策并写出状态转移方程:之所以把这两步放在一起,是因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以,如果我们确定了决策,状态转移方程也就写出来了。但事实上,我们常常是反过来做,根据相邻两段的各状态之间的关系来确定决策。

基本要素

1.最优子结构

       当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。问题的最优子结构性质提供了该问题可用动态规划算法求解的重要线索。

       在动态规划算法中,利用问题的最优子结构性质,以自底向上的方式递归地从子问题的最优解逐步构造出整个问题的最优解。

2.重叠子问题

       可用动态规划算法求解的问题应具备的另一个基本要素是子问题的重叠性质。在用递归算法自顶向下求解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要此子问题时,只要简单地用常数时间查看一下结果。通常,不同的子问题个数随问题的大小呈多项式增长。因此,用动态规划算法通常只需要多项式时间,从而获得较高的解题效率。

基本框架

for(j=1; j<=m; j=j+1) // 第一个阶段
   xn[j] = 初始值;

 for(i=n-1; i>=1; i=i-1)// 其他n-1个阶段
   for(j=1; j>=f(i); j=j+1)//f(i)与i有关的表达式
     xi[j]=j=max(或min){g(xi-1[j1:j2]), ......, g(xi-1[jk:jk+1])};

t = g(x1[j1:j2]); // 由子问题的最优解求解整个问题的最优解的方案

print(x1[j1]);

for(i=2; i<=n-1; i=i+1)
{  
     t = t-xi-1[ji];

     for(j=1; j>=f(i); j=j+1)
        if(t=xi[ji])
             break;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值