在 K8s 上使用 vLLM 部署大型语言模型 (LLM)

本文介绍了大型语言模型(LLM)的概念、用途及vLLM——一个用于LLM推理和服务的开源库。重点讲述了如何在Kubernetes集群上,特别是借助Azure Kubernetes服务,使用vLLM部署LLM模型。部署过程涉及GPU配置、命名空间创建、部署清单以及服务端点的设置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是大语言模型?

大型语言模型 (LLM) 代表一种人工智能 (AI) 软件形式,能够理解和生成文本以及其他功能。法学硕士接受广泛数据集的培训,因此被称为“大型”。这些模型根据机器学习原理运行,利用称为变压器模型的神经网络架构。

简而言之,法学硕士是一个暴露于大量示例以理解和解释人类语言或复杂数据的软件实体。用于培训法学硕士的数据通常来自互联网,包含大量文本内容。然而,LLM 培训的有效性取决于这些样本的质量,这促使开发人员有时选择更精心策划的数据集。

法学硕士使用一种称为深度学习的机器学习来理解字符、单词和句子如何协同工作。深度学习涉及非结构化数据的概率分析,最终使深度学习模型能够在无需人工干预的情况下识别内容片段之间的区别。

LLM 有何用途?

LLM,即大型语言模型,由于其能够理解和生成类人文本的能力,在各个领域都有广泛的应用。 LLM 的一些常见用途包括:

1.文本生成

2.语言翻译

  1. 情感分析

  2. 文本摘要

  3. 内容策划和推荐

总体而言,LLM 是在自然语言处理领域具有广泛适用性的多功能工具,可实现广泛的智能语言相关任务和应用。

什么是vLLM?

vLLM 是一个用于 LLM 推理和服务的开源库,提供快速实施和用户友好的功能。 vLLM 由加州大学伯克利分校专家精心制作,并在 Chat bot Arena 和 Vicuna Demo 中

<think>好的,用户想了解如何使用vLLM部署大模型,我需要根据提供的引用和之前的回答来整理步骤和方法。首先,我得先回顾用户提供的引用内容,引用[1]提到了安装vLLM、加载模型、API部署容器部署以及监控优化。引用[2]则更详细地描述了在Linux环境下使用Docker进行部署的步骤,包括系统准备、Docker安装、下载模型和配置vLLM。 用户之前的问题是关于模型训练后的部署,我的回答里提到了vLLM的显存优化、动态批处理等,现在用户具体想了解vLLM部署方法。需要结合引用中的步骤,同时参考之前的回答中的工具链对比和性能优化部分,比如PagedAttention和Triton的使用。 接下来要组织步骤:首先系统准备,安装依赖,然后安装vLLM,加载模型,部署服务(API),容器部署,最后监控优化。需要确保每一步都清晰,并加入代码示例或命令,比如Docker的pull命令,Python代码示例。另外,可能要注意是否需要区分本地部署和生产环境部署的不同步骤,用户提到Docker和Kubernetes,所以需要包含这些内容。 还需要检查是否有遗漏的步骤,比如模型转换或者量化,但根据引用内容,vLLM部署可能直接加载预训练模型,所以可能不需要转换。不过之前的回答提到ONNX转换,但这里可能不需要,除非用户有特别需求。此外,要强调监控和性能优化,比如使用Prometheus和Grafana,或者vLLM自带的监控工具。 最后,确保语言简洁,步骤明确,并且参考了提供的引用和之前的回答中的相关信息。可能需要加入注意事项,比如硬件要求,常见问题解决等,以帮助用户避免常见陷阱。</think>以下是使用vLLM部署大模型的完整方法和步骤,结合工业级实践与性能优化策略: --- ### 一、**环境准备** 1. **硬件要求** - **GPU**:推荐NVIDIA A100/A800(支持FP16/INT8加速) - **显存**:模型参数量×显存系数(如LLaMA-7B需$7 \times 2.5 = 17.5$GB显存)[^1] - **存储**:预留模型文件体积的3倍空间(用于缓存和分片) 2. **软件依赖** ```bash # 基础环境 sudo apt-get install -y docker.io nvidia-container-toolkit pip install "vllm>=0.3.0" fastapi uvicorn # 验证CUDA兼容性 nvidia-smi --query-gpu=compute_cap --format=csv ``` --- ### 二、**模型部署全流程** #### **步骤1:模型加载与转换** 1. **下载HuggingFace模型** ```bash # 下载LLaMA-7B示例 git lfs install git clone https://huggingface.co/meta-llama/Llama-2-7b-chat-hf ``` 2. **vLLM模型加载** ```python from vllm import LLM, SamplingParams # 启用PagedAttention显存优化 llm = LLM( model="/path/to/Llama-2-7b-chat-hf", tensor_parallel_size=2, # 多GPU并行 gpu_memory_utilization=0.9, # 显存利用率上限 enforce_eager=True # 禁用CUDA图捕获(兼容性模式) ) ``` #### **步骤2:服务化部署** 1. **启动REST API服务** ```bash # 单节点启动(自动启用动态批处理) python -m vllm.entrypoints.api_server \ --model meta-llama/Llama-2-7b-chat-hf \ --tensor-parallel-size 2 \ --port 8000 ``` 2. **生产级部署(Docker+K8s)** ```dockerfile # Dockerfile示例 FROM nvidia/cuda:12.1.0-base RUN pip install vllm CMD ["python", "-m", "vllm.entrypoints.api_server", "--model", "meta-llama/Llama-2-7b-chat-hf"] ``` ```bash # Kubernetes部署 kubectl create deployment vllm --image=your-registry/vllm-service \ --env="MODEL_NAME=meta-llama/Llama-2-7b-chat-hf" \ --limits=nvidia.com/gpu=2 ``` #### **步骤3:性能调优** 1. **动态批处理配置** ```python # 调整批处理策略 llm = LLM( ..., max_num_seqs=256, # 最大并发请求数 max_num_batched_tokens=4096, # 单批最大token数 block_size=16 # KV缓存块大小(影响显存碎片) ) ``` 2. **监控指标采集** ```bash # Prometheus监控配置 vllm_metrics_port=8001 # 默认指标暴露端口 curl http://localhost:8001/metrics ``` - **关键指标**: - `vllm_running_requests`:实时并发请求数 - `vllm_gpu_utilization`:GPU利用率 - `vllm_pending_requests`:队列等待请求数[^1] --- ### 三、**高阶优化技巧** 1. **混合精度推理** ```python # 启用FP16量化(显存减少50%) llm = LLM( model=model_path, dtype="half", # float16精度 quantization="awq" # 激活感知权重量化(需GPU支持) ) ``` 2. **连续批处理优化** ```python # 自定义调度策略 from vllm.engine.arg_utils import AsyncEngineArgs engine_args = AsyncEngineArgs( worker_use_ray=True, # 分布式推理 disable_log_stats=False, max_parallel_loading_workers=4 ) ``` 3. **显存碎片治理** ```bash # 启用内存池优化 export VLLM_USE_MEMORY_POOL=1 export VLLM_MEMORY_POOL_SIZE=20 # 单位GB ``` --- ### 四、**客户端调用示例** ```python import requests payload = { "prompt": "中国的首都是哪里?", "max_tokens": 128, "temperature": 0.7 } response = requests.post( "http://localhost:8000/generate", headers={"Content-Type": "application/json"}, json=payload ) print(response.json()["text"]) ``` --- ### 五、**常见问题解决** 1. **OOM错误** - 降低`gpu_memory_utilization`参数(默认0.9→0.8) - 启用`VLLM_USE_MEMORY_POOL`显存池[^1] 2. **长尾延迟** - 设置`max_num_batched_tokens=2048`限制单批规模 - 增加`--max-parallel-loading-workers`提升加载并行度 3. **多GPU负载不均** - 使用`--tensor-parallel-size`匹配实际GPU数量 - 检查NCCL通信配置(`NCCL_DEBUG=INFO`) --- ### 选型建议 - **中小规模部署**:直接使用vLLM原生API Server - **企业级集群**:结合Kubernetes + Istio实现流量管理 - **超大规模模型**:集成Megatron-LM进行混合并行 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值