年度最重要论文之一:Anthropic 的词典学习是理解法学硕士的重大突破 该模型以去年的研究为基础,试图了解 LLM 中的可解释特征。

Anthropic的最新研究通过字典学习揭示LLM(大型语言模型)的可解释特征,使用稀疏自编码器分解模型激活,提高了AI的透明度。他们发现,尽管挑战重重,但通过特定的特征转向实验和可解释性评估,可以理解和影响模型的行为,为打开LLM黑匣子提供了新路径。

许多人认为可解释性是LLM的下一个前沿领域之一。这些新一代前沿模型通常被视为不透明的系统:数据输入,响应出现,而具体响应背后的原因仍然隐藏。这种模糊性使这些模型的可信度变得复杂,引发了人们对它们可能产生有害、有偏见或不真实输出的担忧。如果内部运作是一个谜,人们如何能对它们的安全性和可靠性充满信心?

深入研究模型的内部状态并不一定能澄清问题。内部状态本质上是数字(神经元激活)的集合,缺乏明确的含义。通过与 Claude 等模型的交互,很明显它们理解并利用了各种概念,但这些概念无法通过检查神经元直接辨别。每个概念跨越多个神经元,每个神经元都对多个概念做出贡献。

去年,Anthropic 在可解释性领域发表了一些非常相关的研究,重点是将神经元激活模式(称为特征)与人类可以理解的概念相匹配。他们使用来自经典机器学习的“字典学习”,确定了不同情境中重复出现的神经元激活模式。因此,模型的内部状态可以用几个活动特征而不是许多活动神经元来表示。正如字典中的单词由字母组成,句子由单词组成一样,AI 特征是通过组合神经元而形成的,而内部状态则是通过组合特征而形成的。

Anthropic 的工作基于相对较小的模型。下一个明显的挑战是确定这项工作是否适用于大型前沿模型。在一篇新论文中,Anthropic 使用字典学习从其 Claude Sonnet 模型中提取可解释的特征。该技术的核心基于熟悉的架构。

稀疏自编码器

Anthropic 旨在使用稀疏自动编码器 (SAE) 将模型激活(特别是在 Claude 3 Sonnet 中)分解为更易于解释的部分。SAE 属于一类称为“稀疏字典学习”的算法,该算法将数据分解为稀疏活动组件的加权和。

SAE 包含两层。第一层(编

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值