使用 Neo4j 和 LangGraph 实现 GraphReader 通过将长文档构建为可探索的图形并实现基于图形的代理系统来提高 RAG 的准确性和性能

简介

大型语言模型 (LLM) 擅长传统的 NLP 任务,如总结和情感分析,但更强大的模型也表现出了良好的推理能力。LLM 推理通常被理解为通过制定计划、执行计划并评估每一步的进展来解决复杂问题的能力。基于此评估,他们可以通过修改计划或采取替代行动来适应。代理的兴起正成为 RAG 应用中回答复杂问题的一种越来越引人注目的方法。

在这篇博文中,我们将探讨GraphReader 代理的实现。此代理旨在从遵循预定义架构的结构化知识图谱中检索信息。与您在演示文稿中看到的典型图表不同,此图谱更接近文档或词汇图谱,包含文档、其区块以及原子事实形式的相关元数据。

在这里插入图片描述

推荐文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值