简介
大型语言模型 (LLM) 擅长传统的 NLP 任务,如总结和情感分析,但更强大的模型也表现出了良好的推理能力。LLM 推理通常被理解为通过制定计划、执行计划并评估每一步的进展来解决复杂问题的能力。基于此评估,他们可以通过修改计划或采取替代行动来适应。代理的兴起正成为 RAG 应用中回答复杂问题的一种越来越引人注目的方法。
在这篇博文中,我们将探讨GraphReader 代理的实现。此代理旨在从遵循预定义架构的结构化知识图谱中检索信息。与您在演示文稿中看到的典型图表不同,此图谱更接近文档或词汇图谱,包含文档、其区块以及原子事实形式的相关元数据。
推荐文章
-
《本地电脑大模型系列之 16 使用 LangGraph 和 Llama 3 的本地 Agentic RAG (教程含源码)》 权重1,本地类、LangGraph类、Llama 3类
-
《CrewAI教程之 11 深入研究 CrewAI:用 Python 轻松构建多智能体系统(教程含源码)》 权重1,flux类、ComfyUI类