A2A 和 MCP 服务器的 Agentic 工作流

简介

A2A和MCP协议是构建智能代理系统的两种不同方法。

A2A(代理对代理)

A2A 专为点对点代理交互而设计,其中生产者和消费者均为 AI 代理。每个代理都具有自我意识,已在网络上注册,并可以通过共享协议(通常使用 JSON-RPC 的 WebSocket 协议)与其他代理通信。这使得 A2A 成为构建去中心化 AI 生态系统、多代理推理系统或对话式 AI 主干网的理想选择,其中每个组件都能够自主运行。

可以将其想象成一个由智能同伴组成的网络——每个代理都可以倾听、决策和响应。

推荐文章

MCP(模型上下文协议)

另一方面,MCP采取了更务实的方法。它假设只有调用方(发起方)才是代理——通常由 LLM 或情境 AI 驱动。另一端呢?仅仅是工具、函数、API 和服务。

本质上,MCP 弥合了自然语言与现有软件系统之间的差距。它允许 AI 代理调用工具链、API 或遗留逻辑,就像“自言自语”一样——将用户的意图转化为结构化的调用。

A2A 将代理与代理连接起来,而 MCP 将代理与工具连接起来。

🕸️ 生态系统演进:从工作流到网格

随着这个生态系统的成熟,你自然会遇到更复杂的 A2A 和 MCP 组合。A2A 代理可能在内部使用工具(通过 MCP),而 MCP 驱动的流程可能在两端都涉及智能代理。界限开始变得模糊。

最终,您将看到代理依赖于其他代理,代理又依赖于其他代理等等,形成一个动态的、相互连接的代理网格。

最简单的形式类似于工作流——数据从一个步骤流向下一个步骤的线性序列。但真正的代理网格远不止于此。它们可以分支、循环、自我修改,甚至可以根据上下文、反馈或过程中的修饰符做出决策。

工作流程是一条单行道。
网格则是一个活生生的网络——能够向多个方向流动,自我转换,并随着时间的推移不断发展。

网格中的模式:代理如何连接和演化

随着代理网格的增长,某些连接模式开始显现——就像网络拓扑或微服务架构一样。这些模式决定了数据流向、决策方式以及代理协作方式。

以下是一些常见的网格图案:

线性链:
代理之间相互连接,非常适合逐步执行的工作流程。
示例:意图解析器 → 修改器 → API 调用器 → 响应汇总器
扇出(广播):
一个代理并行触发多个下游代理。
示例:事件监听器 → [日历更新、通知发送器、记录器]
扇入(聚合器):
多个代理将数据汇聚到一个代理,由该代理聚合或整合数据。
示例:[天气获取器、交通查询器] → 路线规划器
循环或反馈网格:
代理将数据发送回先前的节点,以便重新评估或重试。
示例:任务执行器 ↺ 重试逻辑修改器
条件分支:
修改器或决策代理根据逻辑动态路由流程。
例如:分析器 →(如果风险高)→升级代理
→(如果风险低)→归档代理
动态网格(又称自修改):
节点在运行时根据上下文添加或删除。
示例:LLM 代理 → 生成 → 新建代理节点 + 插入网格
每种模式都可以组合和分层,形成高度适应性的智能系统——其中代理不仅仅是服务,而且是共享问题解决空间中的积极参与者。

A2AClient 与 A2AJava

如果您可以直观地拖放和连接代理,并能够即时拦截、修改和转换他们的响应,那会怎样?

这正是我要构建的——一个可视化的 A2A(代理到代理)网格构建器,使用:

🧩 a2ajava:基于 Java 的代理网格运行时,由 WebSockets 和 Spring Boot 提供支持
🧠 Drawflow:轻量级 JavaScript 可视化节点编辑器
⚙️ 自定义修饰符来拦截代理响应
💡 一个简单、强大的界面,让任何人都可以构建和可视化复杂的工作流程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值