PTA:7-18 二分法求多项式单根 (20分)

本文介绍了一种使用二分法求解给定区间内3阶多项式根的方法,并提供了一个C语言实现的示例代码。通过不断缩小根所在的区间,直到满足精度要求,从而找到根的近似值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

博主不定期更新【保研/推免、C/C++、5G移动通信、Linux、生活随笔】系列文章,喜欢的朋友【点赞+关注】支持一下吧!


  二分法求函数根的原理为:如果连续函数f(x)f(x)f(x)在区间[a,b][a,b][a,b]的两个端点取值异号,即f(a)f(b)<0f(a)f(b)<0f(a)f(b)<0,则它在这个区间内至少存在1个根rrr,即f(r)=0f(r)=0f(r)=0

  二分法的步骤为:

  • 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2(a+b)/2(a+b)/2;否则
  • 如果f(a)f(b)<0f(a)f(b)<0f(a)f(b)<0,则计算中点的值f((a+b)/2)f((a+b)/2)f((a+b)/2)
  • 如果f((a+b)/2)f((a+b)/2)f((a+b)/2)正好为0,则(a+b)/2(a+b)/2(a+b)/2就是要求的根;否则
  • 如果f((a+b)/2)f((a+b)/2)f((a+b)/2)f(a)f(a)f(a)同号,则说明根在区间[(a+b)/2,b][(a+b)/2,b][(a+b)/2,b],令a=(a+b)/2a=(a+b)/2a=(a+b)/2,重复循环;
  • 如果f((a+b)/2)f((a+b)/2)f((a+b)/2)f(b)f(b)f(b)同号,则说明根在区间[a,(a+b)/2][a,(a+b)/2][a,(a+b)/2],令b=(a+b)/2b=(a+b)/2b=(a+b)/2,重复循环。
    加粗样式
      本题目要求编写程序,计算给定3阶多项式f(x)=a3x3+a2x2+a1x+a0f(x)=a_3 x^3+a_2x^2+a_1x+a_0f(x)=a3x3+a2x2+a1x+a0在给定区间[a,b][a,b][a,b]内的根。

输入格式:
  输入在第1行中顺序给出多项式的4个系数a3、a2、a1、a0a_3、a_2、a_1、a_0a3a2a1a0,在第2行中顺序给出区间端点aaabbb。题目保证多项式在给定区间内存在唯一单根。

输出格式:
  在一行中输出该多项式在该区间内的根,精确到小数点后2位。

输入样例:

3 -1 -3 1
-0.5 0.5

输出样例:

0.33

#include <stdio.h>

float f(float a3, float a2, float a1, float a0, float x);
int main()
{
	float a3, a2, a1, a0;
	float a, b;
	float x;
	scanf("%f %f %f %f\n%f %f", &a3, &a2, &a1, &a0, &a, &b);//以上 \n 不要也是一样? 
	while (b-a>0.01)
	{

		if ( f(a3, a2, a1, a0, a)*f(a3, a2, a1, a0, b)<0 )
		{
			if( f(a3, a2, a1, a0, (a+b)/2) == 0 )
			{
				x =  (a+b)/2 ;
				break;
			}
			else if ( f(a3, a2, a1, a0, (a+b)/2)*f(a3, a2, a1, a0, a)>0 )
			{
				a = (a+b)/2;
			}
			else if ( f(a3, a2, a1, a0, (a+b)/2)*f(a3, a2, a1, a0, b)>0 )
			{
				b = (a+b)/2;
			}
			
		}
		else if ( f(a3, a2, a1, a0, a) == 0)
		{
			x = a;
			break;
		}
		else if ( f(a3, a2, a1, a0, b) == 0)
		{
			x = b;
			break;
		}
	
	}
	if (b-a<=0.01)
	{
		x = (a+b)/2;
	}
	printf("%.2f\n", x);
	
	return 0;
}

float f(float a3, float a2, float a1, float a0, float x)
{
	float ret;
	ret = a3*x*x*x + a2*x*x + a1*x + a0;
	return ret;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

月半 月半

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值