简介
在这篇博文中,我们将探讨如何使用 LangGraph 结合 RAG(Retrieval-Augmented Generation)技术来构建一个响应客户邮件的电子邮件智能系统。LangGraph 是一个强大的框架,专为构建和部署基于图的语言应用而设计。它支持复杂的查询处理和信息检索任务,使得我们可以实现一个智能的邮件响应系统。我们的目标是创建一个系统,能够理解和分类客户邮件,然后生成回答问题的最佳策略,最终撰写出符合查询需求的回复邮件。
背景
RAG 技术通过结合检索(Retrieval)和生成(Generation)来提升语言模型的效果。在处理客户邮件时,我们可以借此技术来提升回复的准确性和相关性。此外,通过自定义的事实数据库来增强模型,使其能够引用和生成更精确的信息。
开发环境
- Python 3.8+
- LangChain
- Hugging Face Transformers
实施步骤
-
数据准备和预处理
- 我们从一个 CSV 文件加载相关事实数据。这些数据将被用来构建我们的 RAG 系统。
-
系统架构
- 邮件分类:首先,系统需要能够理解并分类进来的客户邮件。
- 问题生成:根据邮件的类别和内容,系统将生成一些具体的问题,用于从 RAG 检索相关信息。
- 检索和生成:利用 RAG 技术,系统将从预先构建的事实数据库中检索信息,并生成回复内容。
- 邮件撰写:最后,系统将结合检索到的信息和原始邮件内容,撰写一封妥当的回复邮件。
-
代码实现
3.1. 环境设置与依赖安装
首先,我们需要准备环境并安装必要的库。
pip install langchain-groq
pip install -U langchain_community tiktoken langchainhub
pip install -U langchain langgraph
pip install -U langchain langchain-community langchainhub
pip install langchain-chroma bs4
pip install huggingface_hub unstructured sentence_transformers
这段代码主要完成以下功能:
- 从网络下载数据文件。
- 安装LangGraph和相关库,这些库将支持后续的文本处理和机器学习任务。
3.2 数据加载与处理
接下来,我们使用CSVLoader
来加载数据,并准备合并数据源。
from langchain_community.document_loaders.csv_loader import CSVLoader
loader_csv = CSVLoader(file_path="/content/facts.csv")
docs_all = loader_csv.load