一、 大数据仓库较差的建设
先来回忆一下数仓建设经常遇到的一些坑 或 现象~
二、构建数仓建设质量指标体系
还在为如何评估数仓建设质量而犯愁么?本文在常规的分层建设、划分主题外将带大家一起探索出了一条可在大、小团队均可实施落地的数仓建设质量体系构建之路。
为此,从完善度、复用度、规范度、资源度全面衡量数仓建设质量。那问题来了,如何构建这4个核心指标呢。如下表所示:
现在有了数仓质量的度量指标体系,新问题也来了。现有的任务及库表在线上运行及相互依赖引用极多,直接贸然改动可能引起线上问题!!!那该如何“落地”呢?
库表名称改动涉及的面太大,那可以通过任务名称进行改动,例行化每天统计所有的任务消耗的资源;然后放长时间看趋势就可以观察到数据任务的变化趋势。
1、任务名称规范
所属于分层 + 最大引用层 + (主题)(模块)(任务) + 任务调用脚本
- 示例1:dws-dwd-事件轻度聚合表-dws_detail_app_log_di
2、例行化计算所有任务消耗资源
通过属于分层、最大引用层计算得出跨层引用,如:ads 直接依赖于dwd、ods 层则算跨层引用;
三、战略战术性进行任务改造
某个数仓任务改造效果示例:
Tip1: 小表广播,MapJoin加快产出
Tip2: 降低SQL 嵌套层数,加快产出
Tip3: 降低Group By 维度,加快产出
Tip4: MapReduce 升级为 Spark,加快产出
四、通过数仓质量度量体系建设成果
如下图:
- Spark 任务占比逐步提升;
- MapReduce 任务占比逐渐递减;
- 任务平均产出时长在逐步缩短;
文章最后,给大家推荐一些受欢迎的技术博客链接:
- JAVA相关的深度技术博客链接
- Flink 相关技术博客链接
- Spark 核心技术链接
- 设计模式 —— 深度技术博客链接
- 机器学习 —— 深度技术博客链接
- Hadoop相关技术博客链接
- 超全干货--Flink思维导图,花了3周左右编写、校对
- 深入JAVA 的JVM核心原理解决线上各种故障【附案例】
- 请谈谈你对volatile的理解?--最近小李子与面试官的一场“硬核较量”
- 聊聊RPC通信,经常被问到的一道面试题。源码+笔记,包懂
- 深入聊聊Java 垃圾回收机制【附原理图及调优方法】
欢迎扫描下方的二维码或 搜索 公众号“大数据高级架构师”,我们会有更多、且及时的资料推送给您,欢迎多多交流!