10.9 深度Q网络(DQN):从原理到实践,全面解析其在Atari游戏中的应用
- 深度Q网络(DQN)基本原理
- 架构
- 经验回放
- 目标网络
- Atari游戏中的应用
- 环境搭建
- Pong游戏示例
- Breakout游戏示例
- 高级改进与优化
- 双DQN
- 优先经验回放
- 分布式DQN
- 总结与展望
- DQN的优势
- 未来研究方向
深度Q网络(DQN)基本原理
架构
深度Q网络(DQN)是一种结合了深度神经网络的Q-Learning方法。它的主要目的是处理高维输入数据,如图像。DQN的架构通常包括以下几个部分:
- 输入层:接收状态(通常是图像)作为输入。
- 隐藏层:多层全连接层或卷积层,用于提取特征。
- 输出层:输出每个动作的Q值。
经验回放
经验回放是一种通过存储过去的经验来减少样本相关性的技术。它通过将经验存储在一个缓冲区中,并从中随机采样来进行训练,从而提高学习的稳定性和效率。
目标网络
目标网络是DQN的一个重要组成部分,它用于计算目标Q值。目标网络的参数定期从主网络复制过来,以保持稳定性。具体来说,目标网络的更新规则如下:
Qtarget(s,a)=r+γmaxa′Qtarget(s′,a′) Q_{\text{target}}(s, a) = r + \gamma \max_{a'} Q_{\text{target}}(s', a') Q