《Python机器学习基础教程》第十章强化学习基础10.9 深度Q网络(DQN):从原理到实践,全面解析其在Atari游戏中的应用

在这里插入图片描述

10.9 深度Q网络(DQN):从原理到实践,全面解析其在Atari游戏中的应用

深度Q网络(DQN)基本原理
架构
经验回放
目标网络
Atari游戏中的应用
环境搭建
Pong游戏示例
Breakout游戏示例
高级改进与优化
双DQN
优先经验回放
分布式DQN
总结与展望
DQN的优势
未来研究方向
  • 深度Q网络(DQN)基本原理
    • 架构
    • 经验回放
    • 目标网络
  • Atari游戏中的应用
    • 环境搭建
    • Pong游戏示例
    • Breakout游戏示例
  • 高级改进与优化
    • 双DQN
    • 优先经验回放
    • 分布式DQN
  • 总结与展望
    • DQN的优势
    • 未来研究方向

深度Q网络(DQN)基本原理

架构

深度Q网络(DQN)是一种结合了深度神经网络的Q-Learning方法。它的主要目的是处理高维输入数据,如图像。DQN的架构通常包括以下几个部分:

  • 输入层:接收状态(通常是图像)作为输入。
  • 隐藏层:多层全连接层或卷积层,用于提取特征。
  • 输出层:输出每个动作的Q值。

经验回放

经验回放是一种通过存储过去的经验来减少样本相关性的技术。它通过将经验存储在一个缓冲区中,并从中随机采样来进行训练,从而提高学习的稳定性和效率。

目标网络

目标网络是DQN的一个重要组成部分,它用于计算目标Q值。目标网络的参数定期从主网络复制过来,以保持稳定性。具体来说,目标网络的更新规则如下:
Qtarget(s,a)=r+γmax⁡a′Qtarget(s′,a′) Q_{\text{target}}(s, a) = r + \gamma \max_{a'} Q_{\text{target}}(s', a') Q

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

精通代码大仙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值